2
|
Pfrengle S, Neukamm J, Guellil M, Keller M, Molak M, Avanzi C, Kushniarevich A, Montes N, Neumann GU, Reiter E, Tukhbatova RI, Berezina NY, Buzhilova AP, Korobov DS, Suppersberger Hamre S, Matos VMJ, Ferreira MT, González-Garrido L, Wasterlain SN, Lopes C, Santos AL, Antunes-Ferreira N, Duarte V, Silva AM, Melo L, Sarkic N, Saag L, Tambets K, Busso P, Cole ST, Avlasovich A, Roberts CA, Sheridan A, Cessford C, Robb J, Krause J, Scheib CL, Inskip SA, Schuenemann VJ. Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes. BMC Biol 2021; 19:220. [PMID: 34610848 PMCID: PMC8493730 DOI: 10.1186/s12915-021-01120-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/07/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hansen's disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease's complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period. RESULTS Here, we reconstructed 19 ancient M. leprae genomes to further investigate M. leprae's genetic variation in Europe, with a dedicated focus on bacterial genomes from previously unstudied regions (Belarus, Iberia, Russia, Scotland), from multiple sites in a single region (Cambridgeshire, England), and from two Iberian leprosaria. Overall, our data confirm the existence of similar phylogeographic patterns across Europe, including high diversity in leprosaria. Further, we identified a new genotype in Belarus. By doubling the number of complete ancient M. leprae genomes, our results improve our knowledge of the past phylogeography of M. leprae and reveal a particularly high M. leprae diversity in European medieval leprosaria. CONCLUSIONS Our findings allow us to detect similar patterns of strain diversity across Europe with branch 3 as the most common branch and the leprosaria as centers for high diversity. The higher resolution of our phylogeny tree also refined our understanding of the interspecies transfer between red squirrels and humans pointing to a late antique/early medieval transmission. Furthermore, with our new estimates on the past population diversity of M. leprae, we gained first insights into the disease's global history in relation to major historic events such as the Roman expansion or the beginning of the regular transatlantic long distance trade. In summary, our findings highlight how studying ancient M. leprae genomes worldwide improves our understanding of leprosy's global history and can contribute to current models of M. leprae's worldwide dissemination, including interspecies transmissions.
Collapse
Affiliation(s)
- Saskia Pfrengle
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Meriam Guellil
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Marcel Keller
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Martyna Molak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, USA
- Swiss and Tropical Public Health Institute, Basel, Switzerland
| | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Núria Montes
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Gunnar U Neumann
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Rezeda I Tukhbatova
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
- Laboratory of Structural Biology, Kazan Federal University, Kazan, Russian Federation, 420008
| | - Nataliya Y Berezina
- Research Institute and Museum of Anthropology, Moscow State University, 125009, Mokhovaya str. 11, Moscow, Russian Federation
| | - Alexandra P Buzhilova
- Research Institute and Museum of Anthropology, Moscow State University, 125009, Mokhovaya str. 11, Moscow, Russian Federation
| | - Dmitry S Korobov
- The Institute of Archaeology of the Russian Academy of Sciences, 117292, Dm. Uljanova str. 19, Moscow, Russian Federation
| | - Stian Suppersberger Hamre
- Department of Archaeology, History, Cultural studies and religion, University of Bergen, 5020, Bergen, Norway
| | - Vitor M J Matos
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Maria T Ferreira
- Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Centre for Functional Ecology, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Área de Antropología Física, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Laura González-Garrido
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Área de Antropología Física, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana, 24071, León, Spain
- Institute of Biomedicine (IBIOMED), Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Sofia N Wasterlain
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Célia Lopes
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Laboratory of Biological Anthropology, Department of Biology; School of Science and Technology, University of Évora, Évora, Portugal
| | - Ana Luisa Santos
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Nathalie Antunes-Ferreira
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz (LCFPEM), Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Egas Moniz CRL, Monte de Caparica, Portugal
- Laboratory of Biological Anthropology and Human Osteology (LABOH), CRIA/FCSH, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Vitória Duarte
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Ana Maria Silva
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Centre for Functional Ecology, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- UNIARQ - University of Lisbon, Lisbon, Portugal
| | - Linda Melo
- Department of Life Sciences, University of Coimbra, Research Centre for Anthropology and Health, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Natasa Sarkic
- OSTEO Research, Camino de la Iglesia 1, Barrio de mata, Santiuste De Pedraza, 40171, Segovia, Spain
| | - Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia
| | - Philippe Busso
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institut Pasteur, 25-28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Alexei Avlasovich
- Department of Archeology, History of Belarus and Special Historical Disciplines, Mogilev State A. Kuleshov University, Str Kosmonavtov 1, Mogilev, 212022, Republic of Belarus
| | - Charlotte A Roberts
- Department of Archaeology, Durham University, South Road, Durham, DH1 3 LE, UK
| | - Alison Sheridan
- Department of Scottish History and Archaeology, National Museums Scotland, Chambers Street, Edinburgh, EH1 1JF, UK
| | - Craig Cessford
- Department of Archaeology, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
| | - John Robb
- Department of Archaeology, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany
- Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, 51010, Tartu, Estonia.
- St John's College, University of Cambridge, Cambridge, CB2 1TP, UK.
| | - Sarah A Inskip
- School of Archaeology and Ancient History, University of Leicester, Leicester, LE1 7RH, UK.
| | - Verena J Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute for Archaeological Sciences, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Paleoenvironments, University of Tübingen, Rümelinstrasse 19-23, 72070, Tübingen, Germany.
| |
Collapse
|
5
|
Baker BJ, Crane-Kramer G, Dee MW, Gregoricka LA, Henneberg M, Lee C, Lukehart SA, Mabey DC, Roberts CA, Stodder ALW, Stone AC, Winingear S. Advancing the understanding of treponemal disease in the past and present. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171 Suppl 70:5-41. [PMID: 31956996 DOI: 10.1002/ajpa.23988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Syphilis was perceived to be a new disease in Europe in the late 15th century, igniting a debate about its origin that continues today in anthropological, historical, and medical circles. We move beyond this age-old debate using an interdisciplinary approach that tackles broader questions to advance the understanding of treponemal infection (syphilis, yaws, bejel, and pinta). How did the causative organism(s) and humans co-evolve? How did the related diseases caused by Treponema pallidum emerge in different parts of the world and affect people across both time and space? How are T. pallidum subspecies related to the treponeme causing pinta? The current state of scholarship in specific areas is reviewed with recommendations made to stimulate future work. Understanding treponemal biology, genetic relationships, epidemiology, and clinical manifestations is crucial for vaccine development today and for investigating the distribution of infection in both modern and past populations. Paleopathologists must improve diagnostic criteria and use a standard approach for recording skeletal lesions on archaeological human remains. Adequate contextualization of cultural and environmental conditions is necessary, including site dating and justification for any corrections made for marine or freshwater reservoir effects. Biogeochemical analyses may assess aquatic contributions to diet, physiological changes arising from treponemal disease and its treatments (e.g., mercury), or residential mobility of those affected. Shifting the focus from point of origin to investigating who is affected (e.g., by age/sex or socioeconomic status) and disease distribution (e.g., coastal/ inland, rural/urban) will advance our understanding of the treponemal disease and its impact on people through time.
Collapse
Affiliation(s)
- Brenda J Baker
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona
| | - Gillian Crane-Kramer
- Department of Anthropology, State University of New York at Plattsburgh, Plattsburgh, New York
| | - Michael W Dee
- Centre for Isotope Research, University of Groningen, Groningen, Netherlands
| | - Lesley A Gregoricka
- Department of Sociology, Anthropology, and Social Work, University of South Alabama, Mobile, Alabama
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Unit, Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Lee
- Department of Anthropology, California State University Los Angeles, Los Angeles, California
| | - Sheila A Lukehart
- Department of Medicine/Infectious Diseases and Global Health, University of Washington, Seattle, Washington
| | - David C Mabey
- Communicable Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ann L W Stodder
- Office of Archaeological Studies, The Museum of New Mexico, Santa Fe, New Mexico
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona
| | - Stevie Winingear
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona
| |
Collapse
|
7
|
Salesse K, Kaupová S, Brůžek J, Kuželka V, Velemínský P. An isotopic case study of individuals with syphilis from the pathological-anatomical reference collection of the national museum in Prague (Czech Republic, 19th century A.D.). INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2019; 25:46-55. [PMID: 31051405 DOI: 10.1016/j.ijpp.2019.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE This paper aims at investigating the possible existence of isotopic offsets in δ13Ccol and δ15Ncol values in relation to tertiary syphilis. MATERIAL Based on materials from the 19th c. A.D. deriving from the pathological-anatomical reference collection (the Jedlička collection) of the National Museum in Prague (Czech Republic), a comparative approach of ten individuals with syphilis and nine without the disease was undertaken. METHODS Bone powder samples were defatted according to the protocol of Liden et al. (1995). Bone collagen was extracted following the protocol of Bocherens et al. (1991). RESULTS Our results show that individuals with syphilis have lower δ13Ccol values than individuals without the disease; the observed difference between the two groups is about 0.3-0.4‰, which is relatively small but still meaningful. However, no difference between δ15Ncol values of the two groups has been noticed. CONCLUSIONS Either diets prescribed by physicians to syphilitic patients or nutritional stress caused by cyclic appetite disturbance due to the disease itself or the administered medical treatment appeared to be possible explanations of the observed isotopic pattern. Overall, the response of the two isotopic proxies could argue for relatively limited nutritional restrictions. SIGNIFICANCE This is the first study examining bone collagen isotopic response to syphilis based on clinically documented human skeletal materials. LIMITATIONS The sample sizes are relatively small and cautiousness must be taken regarding the interpretations of the data. SUGGESTIONS FOR FURTHER RESEARCH Compound-specific stable isotope investigations and analysis of mercury content could be helpful to better understand the observed isotopic effects.
Collapse
Affiliation(s)
- Kevin Salesse
- Research Unit of Anthropology and Human Genetics, Université Libre de Bruxelles, CP192, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium; UMR 5199: "PACEA, De la Préhistoire à l'Actuel: Culture, Environnement et Anthropologie", Université de Bordeaux, Bâtiment B8, allée Geoff ;roy Saint Hilaire, CS50023, 33615, Pessac cedex, France.
| | - Sylva Kaupová
- Department of Anthropology, National Museum, Václavské námĕstí 68, 11579, Praha 1, Czech Republic
| | - Jaroslav Brůžek
- UMR 5199: "PACEA, De la Préhistoire à l'Actuel: Culture, Environnement et Anthropologie", Université de Bordeaux, Bâtiment B8, allée Geoff ;roy Saint Hilaire, CS50023, 33615, Pessac cedex, France; Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Viničná 7, 12844, Praha 2, Czech Republic
| | - Vítězslav Kuželka
- Department of Anthropology, National Museum, Václavské námĕstí 68, 11579, Praha 1, Czech Republic
| | - Petr Velemínský
- Department of Anthropology, National Museum, Václavské námĕstí 68, 11579, Praha 1, Czech Republic
| |
Collapse
|
11
|
Szostek K, Haduch E, Stepańczak B, Kruk J, Szczepanek A, Pawlyta J, Głąb H, Milisauskas S. Isotopic composition and identification of the origins of individuals buried in a Neolithic collective grave at Bronocice (southern Poland). HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2013; 65:115-30. [PMID: 24304615 DOI: 10.1016/j.jchb.2013.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
Abstract
The oxygen present in a human organism comes from numerous sources, but the major factor that causes variation in the isotopic composition of this element in a tissue is available drinking water. The isotopic ratio of oxygen in an organism's tissue, including that found in bones and teeth, reflects the isotopic oxygen composition typical for the area where a given individual developed and lived. Of particular interest with regard to this issue were a series of skeletons from the multiple grave discovered at the Funnel Beaker-Baden settlement at Bronocice (southern Poland). The question therefore arose whether the specimens buried in this grave were part of the local community. The oxygen isotope level was established using apatite isolated from bones or teeth. A femur and root dentine samples taken from permanent teeth were subjected to oxygen isotope analysis. The oxygen isotope level of the site was established on the basis of local water precipitation and measurements taken from the oxygen isotope concentration in apatite samples isolated from the bones of animals co-occurring with the studied human group. It has been found that the oxygen isotope levels in the bones and dentine of almost all the analysed specimens from the excavated site at Bronocice were within the established range for the area's environment, providing evidence for their local origin. Thus, it can be assumed that the analysed group inhabiting the macrosettlement at Bronocice during the Funnel Beaker phase of the Baden culture was most probably of local origin.
Collapse
Affiliation(s)
- K Szostek
- Department of Anthropology, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland.
| | - E Haduch
- Department of Anthropology, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - B Stepańczak
- Department of Anthropology, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - J Kruk
- Institute of Archaeology and Ethnology Polish Academy of Science, ul. Sławkowska 17, 31-016 Kraków, Poland
| | - A Szczepanek
- Department of Anthropology, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - J Pawlyta
- Department of Radioisotopes, Institute of Physics, Silesian University of Technology, Gliwice, Poland
| | - H Głąb
- Department of Anthropology, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland
| | - S Milisauskas
- Department of Anthropology, State University of New York at Buffalo, Buffalo 14261-0026, USA
| |
Collapse
|