1
|
Conaway MA, von Cramon-Taubadel N. Morphological integration of the hominoid postcranium. J Hum Evol 2022; 171:103239. [PMID: 36095909 DOI: 10.1016/j.jhevol.2022.103239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 10/14/2022]
Abstract
Previous research has suggested that magnitudes of integration may be distinct in the postcranium of hominoids when compared to other primate species. To test this hypothesis, we estimated and compared magnitudes of integration of eight postcranial bones from three-dimensional surface scans for 57 Hylobates lar, 58 Gorilla gorilla, 60 Pan troglodytes, 60 Homo sapiens, 60 Chlorocebus pygerythrus, and 60 Macaca fascicularis. We tested the hypotheses that 1) magnitudes of integration would be distinct in the postcranium of hominoids compared to cercopithecoids, with the explicit prediction that magnitudes of integration would be lower in hominoids than in cercopithecoids, and 2) girdle elements (scapula, os coxa) would have lower magnitudes of integration across all taxa. Integration was quantified using the integration coefficient of variation from interlandmark distances reflecting anatomical and developmental modules defined according to a priori criteria. A resampling protocol was employed to generate distributions of integration values that were then compared statistically using Mann-Whitney U tests with Bonferroni adjustment. Support for hypothesis 1 was mixed: with the exception of Gorilla, hominoid taxa were less integrated than the cercopithecoids for all anatomical modules. However, Homo, Gorilla, and, to a lesser extent, Pan showed higher integration than Hylobates and the cercopithecoids for homologous limb elements, with magnitudes of integration for both modules being lowest for Hylobates. These results generally support the hypothesis of distinct patterns of magnitudes of integration in the hominoid postcranium. The high integration of Gorilla may be explained by the effects of overall body size. The results supported the predictions of the second hypothesis. Regardless of taxon, the os coxa and scapula were generally the least integrated skeletal elements, while the femur and radius were the most integrated. The lower integration of the girdle elements suggests that the geometric complexities of particular elements may significantly influence study outcomes.
Collapse
Affiliation(s)
- Mark A Conaway
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University, Ames, IA, USA; Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, Buffalo, NY, USA.
| | - Noreen von Cramon-Taubadel
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
2
|
Phylogenetic, Allometric, and Ecological Factors Affecting Morphological Variation in the Scapula and Humerus of Spiny Rats (Rodentia: Echimyidae). J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractLocomotion, as a fundamental function in mammals directly associated with the use of ecological resources, is expected to have anatomical structures functionally committed that evolved under intense selective pressure, possibly carrying specializations for different locomotor habits. Among caviomorph rodents, the family Echimyidae stands out for having the greatest species richness, with relatively well-resolved phylogenetic relationships, wide variation in body mass, and remarkable diversity of locomotor habits, including arboreal, scansorial, semi-aquatic, semifossorial, and terrestrial forms. Thus, Echimyidae constitutes a promising model for understanding how phylogenetic, allometric, and ecological factors affect the evolution of postcranial structures directly linked to locomotor function. We investigated the influence of these three factors on scapular and humeral morphological variation in 38 echimyid species using two-dimensional geometric morphometry and phylogenetically informed comparative methods. Scapular and humeral shape variation had a low correlation with body mass and structure size, conveying a small or negligible allometric effect. Conversely, a significant moderate to strong phylogenetic signal was detected in both structures, suggesting that an important part of their morphometric variation results from shared evolutionary history. Notably, morphological variation of the scapula was extensively structured by phylogeny, without the marked influence of locomotor habits, suggesting that its shape may be a suitable taxonomic marker. Finally, locomotor habits were important in structuring the morphological variation of the humerus. Our results suggest that the morphologies of the scapula and humerus, despite being anatomically and functionally interconnected, were differentially shaped by ecological factors associated with locomotor habits.
Collapse
|
3
|
Zelazny KG, Sylvester AD, Ruff CB. Bilateral asymmetry and developmental plasticity of the humerus in modern humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:418-433. [PMID: 33460465 DOI: 10.1002/ajpa.24213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/08/2020] [Accepted: 12/08/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This study investigates bilateral asymmetry in the humerus of modern human populations with differing activity patterns to assess the relative plasticity of different bone regions in response to environmental influences, particularly the biomechanical demands of handedness. METHODS External breadths, cross-sectional properties, and centroid sizes were used to quantify directional and absolute asymmetry of humeral diaphyseal, distal periarticular, and articular regions in six populations with differing subsistence strategies (total n = 244). Geometric section properties were measured using computed tomography at six locations along the distal humerus, while centroid sizes of the distal articular and periarticular regions, as well as eight segments of the diaphysis, were extracted from external landmark data. Bilateral asymmetries were compared between populations and sexes. Each property was also tested for correlation with bilateral asymmetry at 40% of bone length, which has been shown to correlate with handedness. RESULTS Asymmetry is highest in the diaphysis, but significant through all distal bone regions. Asymmetry increases in the region of the deltoid tuberosity, and progressively declines distally through the shaft and distal periarticular region. Articular asymmetry is higher than periarticular asymmetry, approaching levels seen just proximal to the olecranon fossa, and is weakly but significantly correlated with diaphyseal asymmetry. Hunter-gatherers from Indian Knoll have significantly higher levels of asymmetry than other groups and are more sexually dimorphic, particularly in cross-sectional properties of the diaphysis. CONCLUSIONS Humeral dimensions throughout the diaphysis, including regions currently used in taxonomic assignments of fossil hominins, likely respond to in vivo use, including population and sex-specific behaviors.
Collapse
Affiliation(s)
- Kaya G Zelazny
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adam D Sylvester
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher B Ruff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Kenyon-Flatt B, Conaway MA, Lycett SJ, von Cramon-Taubadel N. The relative efficacy of the cranium and os coxa for taxonomic assessment in macaques. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:350-367. [PMID: 32594518 DOI: 10.1002/ajpa.24100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/07/2020] [Accepted: 05/20/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVES The cranium is generally considered more reliable than the postcranium for assessing primate taxonomy, although recent research suggests that pelvic shape may be equally reliable. However, little research has focused on intrageneric taxonomic discrimination. Here, we test the relative taxonomic efficacy of the cranium and os coxa for differentiating two macaque species, with and without considering sexual dimorphism. MATERIALS AND METHODS Geometric morphometric analyses were performed on cranial and os coxa landmarks for 119 adult Macaca fascicularis, M. mulatta, and Chlorocebus pygerythrus. Among-group shape variation was examined using canonical variates analyses. Cross-validated discriminant function analysis provided rates of correct group classification. Additionally, average morphological distances were compared with neutral genetic distances. RESULTS Macaque species were clearly differentiated, both cranially and pelvically, when sex was not considered. Males were more often correctly classified based on the os coxa, while female classification rates were high for both morphologies. Female crania and male os coxa were differentiated approximately the same as genetic distance, while male crania were more similar (convergent), and female os coxa were more divergent than expected based on genetic distance. DISCUSSION The hypothesis that cranial and os coxal shape can be used to discriminate among macaque species was supported. The cranium was better at differentiating females, while the os coxa was better at differentiating male macaques. Hence, there is no a priori reason for preferring the cranium when assessing intragenetic taxonomic relationships, but the effects of high levels of sexual dimorphism must be corrected for to accurately assess taxonomic signatures.
Collapse
Affiliation(s)
- Brittany Kenyon-Flatt
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, Buffalo, New York, USA
| | - Mark A Conaway
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, Buffalo, New York, USA
| | - Stephen J Lycett
- Department of Anthropology, University at Buffalo, Buffalo, New York, USA
| | - Noreen von Cramon-Taubadel
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
5
|
Friedl L, Claxton AG, Walker CS, Churchill SE, Holliday TW, Hawks J, Berger LR, DeSilva JM, Marchi D. Femoral neck and shaft structure in Homo naledi from the Dinaledi Chamber (Rising Star System, South Africa). J Hum Evol 2019; 133:61-77. [PMID: 31358184 DOI: 10.1016/j.jhevol.2019.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/27/2023]
Abstract
The abundant femoral assemblage of Homo naledi found in the Dinaledi Chamber provides a unique opportunity to test hypotheses regarding the taxonomy, locomotion, and loading patterns of this species. Here we describe neck and shaft cross-sectional structure of all the femoral fossils recovered in the Dinaledi Chamber and compare them to a broad sample of fossil hominins, recent humans, and extant apes. Cross-sectional geometric (CSG) properties from the femoral neck (base of neck and midneck) and diaphysis (subtrochanteric region and midshaft) were obtained through CT scans for H. naledi and through CT scans or from the literature for the comparative sample. The comparison of CSG properties of H. naledi and the comparative samples shows that H. naledi femoral neck is quite derived with low superoinferior cortical thickness ratio and high relative cortical area. The neck appears superoinferiorly elongated because of two bony pilasters on its superior surface. Homo naledi femoral shaft shows a relatively thick cortex compared to the other hominins. The subtrochanteric region of the diaphysis is mediolaterally elongated resembling early hominins while the midshaft is anteroposteriorly elongated, indicating high mobility levels. In term of diaphyseal robusticity, the H. naledi femur is more gracile that other hominins and most apes. Homo naledi shows a unique combination of characteristics in its femur that undoubtedly indicate a species committed to terrestrial bipedalism but with a unique loading pattern of the femur possibly consequence of the unique postcranial anatomy of the species.
Collapse
Affiliation(s)
- Lukas Friedl
- Department of Anthropology, University of West Bohemia, Plzeň, Czech Republic
| | - Alex G Claxton
- Department of Anthropology, Dartmouth College, 409 Silsby, HB 6047, Hanover, USA
| | - Christopher S Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa; Department of Evolutionary Anthropology, Duke University, 04 Bio Sci Bldg, Durham, NC, 27708, USA
| | - Steven E Churchill
- Department of Evolutionary Anthropology, Duke University, 04 Bio Sci Bldg, Durham, NC, 27708, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Trenton W Holliday
- Department of Anthropology, Tulane University, 417 Dinwiddie Hall, New Orleans, LA, 70118, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - John Hawks
- Department of Anthropology, University of Wisconsin, 5325 Sewell Social Science Building, Madison, WI, 53706, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Lee R Berger
- Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Jeremy M DeSilva
- Department of Anthropology, Dartmouth College, 409 Silsby, HB 6047, Hanover, USA; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
| | - Damiano Marchi
- Department of Biology, University of Pisa, vis Derna 1, Pisa, 56126, Italy; Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa.
| |
Collapse
|
6
|
Maass P, Friedling LJ. Morphometric Analysis of the Neurocranium in an Adult South African Cadaveric Sample. J Forensic Sci 2018; 64:367-374. [PMID: 30129084 DOI: 10.1111/1556-4029.13878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 11/27/2022]
Abstract
Craniometric studies of South Africans yield high accuracies of sex and ancestry classification, but most assess only inter-group variation of Black and White individuals, excluding the highly heterogeneous Colored group, which constitute a significant proportion of the population. This study applied a geometric morphometric approach to the neurocrania of 774 Black, Colored, and White individuals to assess sex and ancestry estimation accuracy based on the detected morphological variation. Accuracies of 70% and 83% were achieved for sex and ancestry, respectively, with ancestry-related variation contributing the largest proportion of overall observed variation. Even when comparing the closely related Black and Colored groups, relatively high accuracies were obtained. It is thus recommended that a similar approach be used to develop a contemporary three-dimensional database, which can be used to objectively, reliably, and accurately classify unknown remains in the South African forensic context.
Collapse
Affiliation(s)
- Petra Maass
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.,Department of Basic Medical Sciences, Faculty of Health Sciences, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein, 9300, South Africa
| | - Louise Jacqui Friedling
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| |
Collapse
|
7
|
Morphometric analysis of the humerus in an adult South African cadaveric sample. Forensic Sci Int 2018; 289:451.e1-451.e9. [PMID: 29895429 DOI: 10.1016/j.forsciint.2018.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/15/2018] [Accepted: 04/20/2018] [Indexed: 11/23/2022]
Abstract
Recent studies using geometric morphometrics have shown that estimations of demographic parameters can be made using skeletal elements previously not thought useful for such purposes. This study used geometric morphometrics to assess humeral morphological variation in an adult South African sample, and evaluated the accuracy of sex and ancestry estimations based on this variation. Humeri of 1046 adult South African individuals (464 females, 582 males) were digitized. Data sets were rotated and scaled to a common centroid using Generalized Procrustes Analysis. Mean centroid sizes between groups were compared using parametric tests, while morphological variation was evaluated using multivariate analyses. Discriminant Function Analysis coupled with leave-one-out cross-validation tests were used to assess the reliability of sex and ancestry classifications based on this variation. Male humeri were relatively larger and presented with morphological features indicative of larger muscle mass and smaller carrying angles than females. White individuals had relatively larger but morphologically less robust humeri than Black or Coloured individuals, likely a reflection of both genetic and socio-economic differences between the groups as enforced under Apartheid law. When sex and ancestry were assessed together, similar variations were detected than when either parameter was individually assessed. Classification accuracy was relatively low when sex was independently assessed (73.3%), but increased when considered in conjunction with ancestry, indicating greater variation between-groups (ancestry) than within-groups. Ancestry estimation accuracies exceeded 80%, even for the highly diverse Coloured group. Classification accuracies of sex-ancestry groups all exceeded 76%. These results show that humerus morphological variation is present and may be used to estimate parameters, such as sex and ancestry, even in complex groups such as the Coloured sample of this study.
Collapse
|
8
|
Larson SG. Nonhuman Primate Locomotion. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:705-725. [DOI: 10.1002/ajpa.23368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Susan G. Larson
- Department of Anatomical Sciences; Stony Brook University School of Medicine; Stony Brook New York 11794-8081
| |
Collapse
|
9
|
A geometric morphometrics comparative analysis of Neandertal humeri (epiphyses-fused) from the El Sidrón cave site (Asturias, Spain). J Hum Evol 2015; 82:51-66. [DOI: 10.1016/j.jhevol.2015.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/21/2022]
|
10
|
Analysis of the forearm rotational efficiency in extant hominoids: New insights into the functional implications of upper limb skeletal structure. J Hum Evol 2014; 76:165-76. [DOI: 10.1016/j.jhevol.2014.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/07/2014] [Accepted: 08/07/2014] [Indexed: 11/21/2022]
|