1
|
Lammers AR, Stakes SA. Kinetics of Symmetrical Versus Asymmetrical In-Phase Gaits During Arboreal Locomotion. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024. [PMID: 39469840 DOI: 10.1002/jez.2878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Quadrupedal animals traveling on arboreal supports change aspects of locomotion to avoid slipping and falls. This study compares locomotor biomechanics in two small mammals: first, the gray short-tailed opossum (Monodelphis domestica) predominantly trots, which is a symmetrical gait. The second species, the Siberian chipmunk (Tamias sibiricus), primarily bounds or half-bounds. Trotting and bounding differ fundamentally in three aspects: location and timing of hand and foot placement; in the way that the trunk bends (trotting, mediolateral bending; bounding, flexion, and extension); and in the dynamics of the center of mass. Both species ran on a flat track and a 2 cm diameter cylindrical track, instrumented with a force plate or pole. For bounding chipmunks, the force pole was modified to measure force only on the right side. We measured speed, duty factor, and force, and calculated vertical, braking, propulsive, and net mediolateral impulses. Vertical and fore-aft impulses were different between trotting opossums and bounding chipmunks, but between trackway types, these impulses were similar within each species. The modifications used by each species to travel on arboreal supports were similar, except in one important respect. Net mediolateral impulse in opossums changed from laterally directed on the flat trackway to medial on the arboreal. But in chipmunks, these impulses on the flat track were medially-directed, and on the arboreal track, the amount of variability was substantially greater. We conclude that chipmunks-and perhaps any bounding animal-are less consistent from stride to stride in their locomotion. This inconsistency requires constant medial and lateral impulses to correct their trajectory when traveling on arboreal surfaces.
Collapse
Affiliation(s)
- Andrew R Lammers
- Department of Health Sciences and Human Performance, Cleveland State University, Cleveland, Ohio, USA
| | - Sarah A Stakes
- School of Health Sciences, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Young JW, Chadwell BA, O'Neill TP, Pastor F, Marchi D, Hartstone-Rose A. Quantitative assessment of grasping strength in platyrrhine monkeys. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24900. [PMID: 38269651 DOI: 10.1002/ajpa.24900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVES Despite the longstanding importance of grasping adaptations in theories of primate evolution, quantitative data on primate grasping strength remain rare. We present the results of two studies testing the prediction that callitrichines-given their comparative retreat from a small-branch environment and specialization for movement and foraging on tree trunks and large boughs-should be characterized by weaker grasping forces and underdeveloped digital flexor muscles relative to other platyrrhines. METHODS First, we directly measured manual grasping strength in marmosets (Callithrix jacchus) and squirrel monkeys (Saimiri boliviensis), using a custom-constructed force transducer. Second, we reanalyzed existing datasets on the fiber architecture of forearm and leg muscles in 12 platyrrhine species, quantifying digital flexor muscle physiological cross-sectional area (i.e., PCSA, a morphometric proxy of muscle strength) relative to the summed PCSA across all forearm or leg muscles. RESULTS Callithrix was characterized by lower mean and maximum grasping forces than Saimiri, and callitrichines as a clade were found to have relatively underdeveloped manual digital flexor muscle PCSA. However, relative pedal digital flexor PCSA did not significantly differ between callitrichines and other platyrrhines. CONCLUSIONS We found partial support for the hypothesis that variation in predominant substrate usage explains variation in empirical measurements of and morphological correlates of grasping strength in platyrrhines. Future research should extend the work presented here by (1) collecting morphological and empirical metrics of grasping strength in additional primate taxa and (2) extending performance testing to include empirical measures of primate pedal grasping forces as well.
Collapse
Affiliation(s)
- Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Brad A Chadwell
- Department of Anatomy, Idaho College of Osteopathic Medicine, Meridian, Idaho, USA
| | - Timothy P O'Neill
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
| | - Francisco Pastor
- Departamento de Anatomía y Radiología, Universidad de Valladolid, Valladolid, Spain
| | | | - Adam Hartstone-Rose
- College of Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Druelle F, Ghislieri M, Molina-Vila P, Rimbaud B, Agostini V, Berillon G. A comparative study of muscle activity and synergies during walking in baboons and humans. J Hum Evol 2024; 189:103513. [PMID: 38401300 DOI: 10.1016/j.jhevol.2024.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Bipedal locomotion was a major functional change during hominin evolution, yet, our understanding of this gradual and complex process remains strongly debated. Based on fossil discoveries, it is possible to address functional hypotheses related to bipedal anatomy, however, motor control remains intangible with this approach. Using comparative models which occasionally walk bipedally has proved to be relevant to shed light on the evolutionary transition toward habitual bipedalism. Here, we explored the organization of the neuromuscular control using surface electromyography (sEMG) for six extrinsic muscles in two baboon individuals when they walk quadrupedally and bipedally on the ground. We compared their muscular coordination to five human subjects walking bipedally. We extracted muscle synergies from the sEMG envelopes using the non-negative matrix factorization algorithm which allows decomposing the sEMG data in the linear combination of two non-negative matrixes (muscle weight vectors and activation coefficients). We calculated different parameters to estimate the complexity of the sEMG signals, the duration of the activation of the synergies, and the generalizability of the muscle synergy model across species and walking conditions. We found that the motor control strategy is less complex in baboons when they walk bipedally, with an increased muscular activity and muscle coactivation. When comparing the baboon bipedal and quadrupedal pattern of walking to human bipedalism, we observed that the baboon bipedal pattern of walking is closer to human bipedalism for both baboons, although substantial differences remain. Overall, our findings show that the muscle activity of a non-adapted biped effectively fulfills the basic mechanical requirements (propulsion and balance) for walking bipedally, but substantial refinements are possible to optimize the efficiency of bipedal locomotion. In the evolutionary context of an expanding reliance on bipedal behaviors, even minor morphological alterations, reducing muscle coactivation, could have faced strong selection pressure, ultimately driving bipedal evolution in hominins.
Collapse
Affiliation(s)
- François Druelle
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France; Functional Morphology Laboratory, University of Antwerp, Campus Drie Eiken (Building D), Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Marco Ghislieri
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Pablo Molina-Vila
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Brigitte Rimbaud
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Valentina Agostini
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Gilles Berillon
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| |
Collapse
|
4
|
Boulinguez-Ambroise G, Dunham N, Phelps T, Mazonas T, Nguyen P, Bradley-Cronkwright M, Boyer DM, Yapuncich GS, Zeininger A, Schmitt D, Young JW. Jumping performance in tree squirrels: Insights into primate evolution. J Hum Evol 2023; 180:103386. [PMID: 37209637 DOI: 10.1016/j.jhevol.2023.103386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/22/2023]
Abstract
Morphological traits suggesting powerful jumping abilities are characteristic of early crown primate fossils. Because tree squirrels lack certain 'primatelike' grasping features but frequently travel on the narrow terminal branches of trees, they make a viable extant model for an early stage of primate evolution. Here, we explore biomechanical determinants of jumping performance in the arboreal Eastern gray squirrel (Sciurus carolinensis, n = 3) as a greater understanding of the biomechanical strategies that squirrels use to modulate jumping performance could inform theories of selection for increased jumping ability during early primate evolution. We assessed vertical jumping performance by using instrumented force platforms upon which were mounted launching supports of various sizes, allowing us to test the influence of substrate diameter on jumping kinetics and performance. We used standard ergometric methods to quantify jumping parameters (e.g., takeoff velocity, total displacement, peak mechanical power) from force platform data during push-off. We found that tree squirrels display divergent mechanical strategies according to the type of substrate, prioritizing force production on flat ground versus center of mass displacement on narrower poles. As jumping represents a significant part of the locomotor behavior of most primates, we suggest that jumping from small arboreal substrates may have acted as a potential driver of the selection for elongated hindlimb segments in primates, allowing the center of mass to be accelerated over a longer distance-and thereby reducing the need for high substrate reaction forces.
Collapse
Affiliation(s)
- Grégoire Boulinguez-Ambroise
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA.
| | - Noah Dunham
- Division of Conservation and Science, Cleveland Metroparks Zoo, 3900 Wildlife Way, Cleveland, 44109, OH, USA; Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, 44106, OH, USA
| | - Taylor Phelps
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA
| | - Thomas Mazonas
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA
| | - Peter Nguyen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA
| | | | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, 27708, NC, USA
| | - Gabriel S Yapuncich
- Medical Education Administration, Duke University School of Medicine, 40 Duke Medicine Circle, Durham, 27710, NC, USA
| | - Angel Zeininger
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, 27708, NC, USA
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, 27708, NC, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA
| |
Collapse
|
5
|
Schapker NM, Chadwell BA, Young JW. Robust locomotor performance of squirrel monkeys (Saimiri boliviensis) in response to simulated changes in support diameter and compliance. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:417-433. [PMID: 34985803 DOI: 10.1002/jez.2574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Arboreal environments require overcoming navigational challenges not typically encountered in other terrestrial habitats. Supports are unevenly distributed and vary in diameter, orientation, and compliance. To better understand the strategies that arboreal animals use to maintain stability in this environment, laboratory researchers must endeavor to mimic those conditions. Here, we evaluate how squirrel monkeys (Saimiri boliviensis) adjust their locomotor mechanics in response to variation in support diameter and compliance. We used high-speed cameras to film two juvenile female monkeys as they walked across poles of varying diameters (5, 2.5, and 1.25 cm). Poles were mounted on either a stiff wooden base ("stable" condition) or foam blocks ("compliant" condition). Six force transducers embedded within the pole trackway recorded substrate reaction forces during locomotion. We predicted that squirrel monkeys would walk more slowly on narrow and compliant supports and adopt more "compliant" gait mechanics, increasing stride lengths, duty factors, and an average number of limbs gripping the support, while the decreasing center of mass height, stride frequencies, and peak forces. We observed few significant adjustments to squirrel monkey locomotor kinematics in response to changes in either support diameter or compliance, and the changes we did observe were often tempered by interactions with locomotor speed. These results differ from a similar study of common marmosets (i.e., Callithrix jacchus, with relatively poor grasping abilities), where variation in diameter and compliance substantially impacted gait kinematics. Squirrel monkeys' strong grasping apparatus, long and mobile tails, and other adaptations for arboreal travel likely facilitate robust locomotor performance despite substrate precarity.
Collapse
Affiliation(s)
- Nicole M Schapker
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
- Cellular and Molecular Biology Program, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Brad A Chadwell
- Department of Anatomy, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
- Cellular and Molecular Biology Program, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
6
|
Druelle F, Supiot A, Meulemans S, Schouteden N, Molina-Vila P, Rimbaud B, Aerts P, Berillon G. The quadrupedal walking gait of the olive baboon, Papio anubis: an exploratory study integrating kinematics and EMG. J Exp Biol 2021; 224:271005. [PMID: 34292320 DOI: 10.1242/jeb.242587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
Primates exhibit unusual quadrupedal features (e.g. diagonal gaits, compliant walk) compared with other quadrupedal mammals. Their origin and diversification in arboreal habitats have certainly shaped the mechanics of their walking pattern to meet the functional requirements necessary for balance control in unstable and discontinuous environments. In turn, the requirements for mechanical stability probably conflict with mechanical energy exchange. In order to investigate these aspects, we conducted an integrative study on quadrupedal walking in the olive baboon (Papio anubis) at the Primatology station of the CNRS in France. Based on kinematics, we describe the centre of mass mechanics of the normal quadrupedal gait performed on the ground, as well as in different gait and substrate contexts. In addition, we studied the muscular activity of six hindlimb muscles using non-invasive surface probes. Our results show that baboons can rely on an inverted pendulum-like exchange of energy (57% on average, with a maximal observed value of 84%) when walking slowly (<0.9 m s-1) with a tight limb phase (∼55%) on the ground using diagonal sequence gaits. In this context, the muscular activity is similar to that of other quadrupedal mammals, thus reflecting the primary functions of the muscles for limb movement and support. In contrast, walking on a suspended branch generates kinematic and muscular adjustments to ensure better control and to maintain stability. Finally, walking using the lateral sequence gait increases muscular effort and reduces the potential for high recovery rates. The present exploratory study thus supports the assumption that primates are able to make use of an inverted pendulum mechanism on the ground using a diagonal walking gait, yet a different footfall pattern and substrate appear to influence muscular effort and efficiency.
Collapse
Affiliation(s)
- François Druelle
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, 75116 Paris, France.,Primatology Station of the CNRS-Celphedia, UAR 846, 13790 Rousset-sur-Arc, France.,Functional Morphology Laboratory, University of Antwerp, 2610 Antwerp, Belgium
| | - Anthony Supiot
- Gait and Motion Analysis Laboratory, Assistance Publique des Hôpitaux de Paris (AP-HP), Robert Debré University Hospital, 75004 Paris, France
| | - Silke Meulemans
- Functional Morphology Laboratory, University of Antwerp, 2610 Antwerp, Belgium
| | - Niels Schouteden
- Functional Morphology Laboratory, University of Antwerp, 2610 Antwerp, Belgium.,Monde Sauvage Safari Parc, 4920 Aywaille, Belgium
| | - Pablo Molina-Vila
- Primatology Station of the CNRS-Celphedia, UAR 846, 13790 Rousset-sur-Arc, France
| | - Brigitte Rimbaud
- Primatology Station of the CNRS-Celphedia, UAR 846, 13790 Rousset-sur-Arc, France
| | - Peter Aerts
- Functional Morphology Laboratory, University of Antwerp, 2610 Antwerp, Belgium.,Department of Movement and Sports Sciences, University of Ghent, 9000 Gent, Belgium
| | - Gilles Berillon
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, 75116 Paris, France.,Primatology Station of the CNRS-Celphedia, UAR 846, 13790 Rousset-sur-Arc, France
| |
Collapse
|
7
|
Young JW, Chadwell BA, Dunham NT, McNamara A, Phelps T, Hieronymus T, Shapiro LJ. The Stabilizing Function of the Tail During Arboreal Quadrupedalism. Integr Comp Biol 2021; 61:491-505. [PMID: 34022040 DOI: 10.1093/icb/icab096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Locomotion on the narrow and compliant supports of the arboreal environment is inherently precarious. Previous studies have identified a host of morphological and behavioral specializations in arboreal animals broadly thought to promote stability when on precarious substrates. Less well-studied is the role of the tail in maintaining balance. However, prior anatomical studies have found that arboreal taxa frequently have longer tails for their body size than their terrestrial counterparts, and prior laboratory studies of tail kinematics and the effects of tail reduction in focal taxa have broadly supported the hypothesis that the tail is functionally important for maintaining balance on narrow and mobile substrates. In this set of studies, we extend this work in two ways. First, we used a laboratory dataset on three-dimensional segmental kinematics and tail inertial properties in squirrel monkeys (Saimiri boliviensis) to investigate how tail angular momentum is modulated during steady-state locomotion on narrow supports. In the second study, we used a quantitative dataset on quadrupedal locomotion in wild platyrrhine monkeys to investigate how free-ranging arboreal animals adjust tail movements in response to substrate variation, focusing on kinematic measures validated in prior laboratory studies of tail mechanics (including the laboratory data presented). Our laboratory results show that S. boliviensis significantly increase average tail angular momentum magnitudes and amplitudes on narrow supports, and primarily regulate that momentum by adjusting the linear and angular velocity of the tail (rather than via changes in tail posture per se). We build on these findings in our second study by showing that wild platyrrhines responded to the precarity of narrow and mobile substrates by extending the tail and exaggerating tail displacements, providing ecological validity to the laboratory studies of tail mechanics presented here and elsewhere. In conclusion, our data support the hypothesis that the long and mobile tails of arboreal animals serve a biological role of enhancing stability when moving quadrupedally over narrow and mobile substrates. Tail angular momentum could be used to cancel out the angular momentum generated by other parts of the body during steady-state locomotion, thereby reducing whole-body angular momentum and promoting stability, and could also be used to mitigate the effects of destabilizing torques about the support should the animals encounter large, unexpected perturbations. Overall, these studies suggest that long and mobile tails should be considered among the fundamental suite of adaptations promoting safe and efficient arboreal locomotion.
Collapse
Affiliation(s)
- Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Brad A Chadwell
- Department of Anatomy, Idaho College of Osteopathic Medicine, Meridian, ID 83642, USA
| | - Noah T Dunham
- Department of Conservation and Science, Cleveland Metroparks Zoo, Cleveland, OH 44109, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Allison McNamara
- Department of Anthropology, University of Texas at Austin, Austin, TX 78712, USA
| | - Taylor Phelps
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Tobin Hieronymus
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Liza J Shapiro
- Department of Anthropology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Hager ER, Hoekstra HE. Tail Length Evolution in Deer Mice: Linking Morphology, Behavior, and Function. Integr Comp Biol 2021; 61:385-397. [PMID: 33871633 DOI: 10.1093/icb/icab030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determining how variation in morphology affects animal performance (and ultimately fitness) is key to understanding the complete process of evolutionary adaptation. Long tails have evolved many times in arboreal and semi-arboreal rodents; in deer mice, long tails have evolved repeatedly in populations occupying forested habitat even within a single species (Peromyscus maniculatus). Here, we use a combination of functional modeling, laboratory studies, and museum records to test hypotheses about the function of tail-length variation in deer mice. First, we use computational models, informed by museum records documenting natural variation in tail length, to test whether differences in tail morphology between forest and prairie subspecies can influence performance in behavioral contexts relevant for tail use. We find that the deer- mouse tail plays little role in statically adjusting center of mass or in correcting body pitch and yaw, but rather it can affect body roll during arboreal locomotion. In this context, we find that even intraspecific tail-length variation could result in substantial differences in how much body rotation results from equivalent tail motions (i.e., tail effectiveness), but the relationship between commonly-used metrics of tail-length variation and effectiveness is non-linear. We further test whether caudal vertebra length, number, and shape are associated with differences in how much the tail can bend to curve around narrow substrates (i.e., tail curvature) and find that, as predicted, the shape of the caudal vertebrae is associated with intervertebral bending angle across taxa. However, although forest and prairie mice typically differ in both the length and number of caudal vertebrae, we do not find evidence that this pattern is the result of a functional trade-off related to tail curvature. Together, these results highlight how even simple models can both generate and exclude hypotheses about the functional consequences of trait variation for organismal-level performance.
Collapse
Affiliation(s)
- Emily R Hager
- Departments of Molecular and Cellular Biology, and Organismic and Evolutionary Biology, Museum of Comparative Zoology, Howard Hughes Medical Institute, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Hopi E Hoekstra
- Departments of Molecular and Cellular Biology, and Organismic and Evolutionary Biology, Museum of Comparative Zoology, Howard Hughes Medical Institute, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Wölfer J, Aschenbach T, Michel J, Nyakatura JA. Mechanics of Arboreal Locomotion in Swinhoe’s Striped Squirrels: A Potential Model for Early Euarchontoglires. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Differences between arboreal and terrestrial supports likely pose less contrasting functional demands on the locomotor system at a small body size. For arboreal mammals of small body size, asymmetrical gaits have been demonstrated to be advantageous to increase dynamic stability. Many of the extant arboreal squirrel-related rodents display a small body size, claws on all digits, and limited prehensility, a combination that was proposed to have characterized the earliest Euarchontoglires. Thus, motion analysis of such a modern analog could shed light onto the early locomotor evolution of eurarchontoglirans. In this study, we investigated how Swinhoe’s striped squirrels (Tamiops swinhoei; Scuiromorpha) adjust their locomotion when faced with different orientations on broad supports and simulated small branches. We simultaneously recorded high-Hz videos (501 trials) and support reaction forces (451 trials) of squirrels running on two types of instrumented trackways installed at either a 45° incline (we recorded locomotion on inclines and declines) or with a horizontal orientation. The striped squirrels almost exclusively used asymmetrical gaits with a preference for full bounds. Locomotion on simulated branches did not differ substantially from locomotion on the flat trackway. We interpreted several of the quantified adjustments on declines and inclines (in comparison to horizontal supports) as mechanisms to increase stability (e.g., by minimizing toppling moments) and as adjustments to the differential loading of fore- and hind limbs on inclined supports. Our data, in addition to published comparative data and similarities to the locomotion of other small arboreal rodents, tree shrews, and primates as well as a likely small body size at the crown-group node of Euarchontoglires, render a preference for asymmetrical gaits in early members of the clade plausible. This contributes to our understanding of the ancestral lifestyle of this mammalian ‘superclade’.
Collapse
|
10
|
Boulinguez-Ambroise G, Herrel A, Berillon G, Young JW, Cornette R, Meguerditchian A, Cazeau C, Bellaiche L, Pouydebat E. Increased performance in juvenile baboons is consistent with ontogenetic changes in morphology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:546-558. [PMID: 33483958 DOI: 10.1002/ajpa.24235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/19/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES In many primates, the greater proportion of climbing and suspensory behaviors in the juvenile repertoire likely necessitates good grasping capacities. Here, we tested whether very young individuals show near-maximal levels of grasping strength, and whether such an early onset of grasping performance could be explained by ontogenetic variability in the morphology of the limbs in baboons. MATERIAL AND METHODS We quantified a performance trait, hand pull strength, at the juvenile and adult stages in a cross-sectional sample of 15 olive baboons (Papio anubis). We also quantified bone dimensions (i.e., lengths, widths, and heights) of the fore- (n = 25) and hind limb (n = 21) elements based on osteological collections covering the whole development of olive baboons. RESULTS One-year old individuals demonstrated very high pull strengths (i.e., 200% of the adult performance, relative to body mass), that are consistent with relatively wider phalanges and digit joints in juveniles. The mature proportions and shape of the forelimb elements appeared only at full adulthood (i.e., ≥4.5 years), whereas the mature hind limb proportions and shape were observed much earlier during development. DISCUSSION These changes in limb performance and morphology across ontogeny may be explained with regard to behavioral transitions that olive baboons experience during their development. Our findings highlight the effect of infant clinging to mother, an often-neglected feature when discussing the origins of grasping in primates. The differences in growth patterns, we found between the forelimb and the hind limb further illustrate their different functional roles, having likely evolved under different ecological pressures (manipulation and locomotion, respectively).
Collapse
Affiliation(s)
- Grégoire Boulinguez-Ambroise
- Mecanismes Adaptatifs et Évolution UMR7179, CNRS-National Museum of Natural History, Paris Cedex 5, France.,Laboratoire de Psychologie Cognitive UMR7290, CNRS, Aix-Marseille Univ, Marseille, France.,Station de Primatologie CNRS, Rousset-sur-Arc, France
| | - Anthony Herrel
- Mecanismes Adaptatifs et Évolution UMR7179, CNRS-National Museum of Natural History, Paris Cedex 5, France
| | - Gilles Berillon
- Station de Primatologie CNRS, Rousset-sur-Arc, France.,Département Homme et Environnement, Musée de L'Homme, UMR 7194 CNRS-MNHN, Place du Trocadéro, Paris, France
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Raphaël Cornette
- Origine, Structure et Evolution de la Biodiversité, UMR 7205, CNRS/MNHN, Paris, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive UMR7290, CNRS, Aix-Marseille Univ, Marseille, France.,Station de Primatologie CNRS, Rousset-sur-Arc, France
| | | | | | - Emmanuelle Pouydebat
- Mecanismes Adaptatifs et Évolution UMR7179, CNRS-National Museum of Natural History, Paris Cedex 5, France
| |
Collapse
|
11
|
Not all fine-branch locomotion is equal: Grasping morphology determines locomotor performance on narrow supports. J Hum Evol 2020; 142:102767. [DOI: 10.1016/j.jhevol.2020.102767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023]
|
12
|
Dunham NT, McNamara A, Shapiro LJ, Phelps T, Young JW. Asymmetrical gait kinematics of free-ranging callitrichines in response to changes in substrate diameter and orientation. J Exp Biol 2020; 223:jeb.217562. [DOI: 10.1242/jeb.217562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/06/2020] [Indexed: 11/20/2022]
Abstract
Arboreal environments present considerable biomechanical challenges for animals moving and foraging among substrates varying in diameter, orientation, and compliance. Most studies of quadrupedal gait kinematics in primates and other arboreal mammals have focused on symmetrical walking gaits and the significance of diagonal sequence gaits. Considerably less research has examined asymmetrical gaits, despite their prevalence in small-bodied arboreal taxa. Here we examine whether and how free-ranging callitrichine primates adjust asymmetrical gait kinematics to changes in substrate diameter and orientation, as well as how variation in gait kinematics affects substrate displacement. We used high-speed video to film free-ranging Saguinus tripartitus and Cebuella pygmaea inhabiting the Tiputini Biodiversity Station, Ecuador. We found that Saguinus used bounding and half-bounding gaits on larger substrates versus gallops and symmetrical gaits on smaller substrates, and also shifted several kinematic parameters consistent with attenuating forces transferred from the animal to the substrate. Similarly, Cebuella shifted from high impact bounding gaits on larger substrates to using more half-bounding gaits on smaller substrates; however, kinematic adjustments to substrate diameter were not as profound as in Saguinus. Both species adjusted gait kinematics to changes in substrate orientation; however, gait kinematics did not significantly affect empirical measures of substrate displacement in either species. Due to their small body size, claw-like nails, and reduced grasping capabilities, callitrichines arguably represent extant biomechanical analogues for an early stage in primate evolution. As such, greater attention should be placed on understanding asymmetrical gait dynamics for insight into hypotheses concerning early primate locomotor evolution.
Collapse
Affiliation(s)
- Noah T. Dunham
- Division of Conservation and Science, Cleveland Metroparks Zoo, 4200 Wildlife Way, Cleveland, OH, 44109, USA
- Department of Biology, Case Western Reserve University, 2080 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Allison McNamara
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA
| | - Liza J. Shapiro
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA
| | - Taylor Phelps
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH, 44272, USA
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 St. Rt. 44, Rootstown, OH, 44272, USA
| |
Collapse
|
13
|
Gaschk JL, Frère CH, Clemente CJ. Quantifying koala locomotion strategies: implications for the evolution of arborealism in marsupials. J Exp Biol 2019; 222:222/24/jeb207506. [PMID: 31848216 DOI: 10.1242/jeb.207506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022]
Abstract
The morphology and locomotor performance of a species can determine their inherent fitness within a habitat type. Koalas have an unusual morphology for marsupials, with several key adaptations suggested to increase stability in arboreal environments. We quantified the kinematics of their movement over ground and along narrow arboreal trackways to determine the extent to which their locomotion resembled that of primates, occupying similar niches, or basal marsupials from which they evolved. On the ground, the locomotion of koalas resembled a combination of marsupial behaviours and primate-like mechanics. For example, their fastest strides were bounding type gaits with a top speed of 2.78 m s-1 (mean 1.20 m s-1), resembling marsupials, while the relatively longer stride length was reflective of primate locomotion. Speed was increased using equal modification of stride length and frequency. On narrow substrates, koalas took longer but slower strides (mean 0.42 m s-1), adopting diagonally coupled gaits including both lateral and diagonal sequence gaits, the latter being a strategy distinctive among arboreal primates. The use of diagonally coupled gaits in the arboreal environment is likely only possible because of the unique gripping hand morphology of both the fore and hind feet of koalas. These results suggest that during ground locomotion, they use marsupial-like strategies but alternate to primate-like strategies when moving amongst branches, maximising stability in these environments. The locomotion strategies of koalas provide key insights into an independent evolutionary branch for an arboreal specialist, highlighting how locomotor strategies can convergently evolve between distant lineages.
Collapse
Affiliation(s)
- Joshua L Gaschk
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Celine H Frère
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| |
Collapse
|
14
|
Eyun S. Accelerated pseudogenization of trace amine-associated receptor genes in primates. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12543. [PMID: 30536583 PMCID: PMC6849804 DOI: 10.1111/gbb.12543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/03/2023]
Abstract
Trace amines (TAs) in the mammalian brain have been investigated for four decades. Trace amine-associated receptors (TAARs) were discovered during the search for receptors activated by TAs. TAARs are considered a second class of vertebrate olfactory receptors and successfully proliferated in conjunction with adaptation to living on the ground to detect carnivore odors. Thus, therian mammals have a high number of TAAR genes due to rapid species-specific gene duplications. In primate lineages, however, their genomes have significantly smaller numbers of TAAR genes than do other mammals. To elucidate the evolutionary force driving these patterns, exhaustive data mining of TAAR genes was performed for 13 primate genomes (covering all four infraorders) and two nonprimate euarchontan genomes. This study identified a large number of pseudogenes in many of these primate genomes and thus investigated the pseudogenization event process for the TAAR repertoires. The degeneration of TAARs is likely associated with arboreal inhabitants reducing their exposure to carnivores, and this was accelerated by the change in the nose shape of haplorhines after their divergence from strepsirrhines. Arboreal life may have decreased the reliance on the chemosensing of predators, suggestive of leading to the depauperation of TAAR subfamilies. The evolutionary deterioration of TAARs in primates has been reestablished in recently derived primates due to high selection pressure and probably functional diversity.
Collapse
Affiliation(s)
- Seong‐il Eyun
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| |
Collapse
|
15
|
Young JW, Hyde A, German R. Ontogeny of intrinsic digit proportions in laboratory rats (Rattus norvegicus): a test of the grasping theory of primate hand and foot growth. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
- Musculoskeletal Biology Research Focus Area, NEOMED, Rootstown, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Alexander Hyde
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Rebecca German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
- Musculoskeletal Biology Research Focus Area, NEOMED, Rootstown, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
16
|
Clemente CJ, Dick TJM, Wheatley R, Gaschk J, Nasir AFAA, Cameron SF, Wilson RS. Moving in complex environments: a biomechanical analysis of locomotion on inclined and narrow substrates. J Exp Biol 2019; 222:jeb.189654. [DOI: 10.1242/jeb.189654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/14/2019] [Indexed: 11/20/2022]
Abstract
Characterisation of an organism's performance in different habitats provides insight into the conditions that allow it to survive and reproduce. In recent years, Northern quolls (Dasyurus hallucatus)—a medium-sized semi-arboreal marsupial native to northern Australia—have undergone significant population declines within open forest, woodland and riparian habitats, but less so in rocky areas. To help understand this decline, we quantified the biomechanical performance of wild Northern quolls as they ran up inclined narrow (13 mm pole) and inclined wide (90 mm platform) substrates. We predicted that quolls may possess biomechanical adaptations to increase stability on narrow surfaces, which are more common in rocky habitats. Our results display that quolls have some biomechanical characteristics consistent with a stability advantage on narrow surfaces. This includes the coupled use of limb pairs, as indicated via a decrease in footfall time, and an ability to produce corrective torques to counteract the toppling moments commonly encountered during gait on narrow surfaces. However, speed was constrained on narrow surfaces, and quolls did not adopt diagonal sequence gaits unlike true arboreal specialists such as primates. In comparison with key predators, such as cats and dogs, Northern quolls appear inferior in terrestrial environments but have a stability advantage at higher speeds on narrow supports. This may partially explain the heterogenous declines in Northern quoll populations among various habitats on mainland Australia.
Collapse
Affiliation(s)
- Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, QLD, Australia
- School of Biological Sciences, University of Queensland, QLD, Australia
| | - Taylor J. M. Dick
- School of Biomedical Sciences, University of Queensland, QLD, Australia
| | - Rebecca Wheatley
- School of Biological Sciences, University of Queensland, QLD, Australia
| | - Joshua Gaschk
- School of Science and Engineering, University of the Sunshine Coast, QLD, Australia
| | | | - Skye F. Cameron
- School of Biological Sciences, University of Queensland, QLD, Australia
| | - Robbie S. Wilson
- School of Biological Sciences, University of Queensland, QLD, Australia
| |
Collapse
|
17
|
Druelle F, Goyens J, Vasilopoulou-Kampitsi M, Aerts P. Compliant legs enable lizards to maintain high running speeds on complex terrains. J Exp Biol 2019; 222:jeb.195511. [DOI: 10.1242/jeb.195511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 01/22/2023]
Abstract
Substrate variations are likely to compel animal performance in natural environments, as running over complex terrains challenges the dynamic stability of the body differently in each step. Yet, being able to negotiate complex terrains at top speed is a strong advantage for animals that have to deal with predators and evasive prey. Only little is known on how animals negotiate such terrain variability at high speed. We investigated this in fast running Acanthodactylus boskianus lizards, by measuring their 3D kinematics using four synchronized high-speed video cameras (325Hz) on an adaptable racetrack. This racetrack was covered with four different substrates, representing increasing levels of terrain complexity. We found that the lizards deal with this complexity gradient by gradually adopting more erect parasagittal leg postures. More erected legs enable, in turn, more compliant legs use which are highly adjustable on complex terrains. Additionally, the lizards stabilise their head, which facilitates vestibular and visual perception. Together, compliant legs and head stabilisation enable the lizards to minimise movements of the body centre of mass, even when running on highly irregular terrains. This suggests that the head and the centre of mass are the priority targets for running on uneven terrains. As a result, running performance (mean forward speed) decreases only slightly, and only on the most challenging substrate under investigation.
Collapse
Affiliation(s)
- François Druelle
- Laboratory for Functional Morphology, University of Antwerp, Belgium
| | - Jana Goyens
- Laboratory for Functional Morphology, University of Antwerp, Belgium
| | | | - Peter Aerts
- Laboratory for Functional Morphology, University of Antwerp, Belgium
- Department of Sport Sciences, University of Ghent, Belgium
| |
Collapse
|
18
|
Dunham NT, McNamara A, Shapiro L, Phelps T, Wolfe AN, Young JW. Locomotor kinematics of tree squirrels (
Sciurus carolinensis
) in free‐ranging and laboratory environments: Implications for primate locomotion and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:103-119. [DOI: 10.1002/jez.2242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Noah T. Dunham
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| | - Allison McNamara
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Liza Shapiro
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Taylor Phelps
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| | - Adrienne N. Wolfe
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| | - Jesse W. Young
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| |
Collapse
|
19
|
Motion analysis of non-model organisms using a hierarchical model: Influence of setup enclosure dimensions on gait parameters of Swinhoe's striped squirrels as a test case. ZOOLOGY 2018; 129:35-44. [PMID: 30170746 DOI: 10.1016/j.zool.2018.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 11/23/2022]
Abstract
In in-vivo motion analyses, data from a limited number of subjects and trials is used as proxy for locomotion properties of entire populations, yet the inherent hierarchy of the individual and population level is usually not accounted for. Despite the increasing availability of hierarchical model frameworks for statistical analyses, they have not been applied extensively to comparative motion analysis. As a case study for the use of hierarchical models, we analyzed locomotor parameters of four Swinhoe's striped squirrels. The small-bodied arboreal mammals exhibit brief bouts of rapid asymmetric gaits. Spatio-temporal parameters on runways with experimentally varied dimensions of the setup enclosure were compared to test for their potentially confounding effects. We applied principal component analysis to evaluate changes to the overall locomotor pattern. A common, non-hierarchical, pooled statistical analysis of the data revealed significant differences in some of the parameters depending on enclosure dimensions. In contrast, we used a hierarchical Bayesian generalized linear model (GLM) that considers subject specific differences and population effects to compare the effect of enclosure dimensions on the measured parameters and the principal components. None of the population effects were confirmed by the hierarchical GLM. The confounding effect of a single subject that deviates in its locomotor behavior is potentially bigger than the influence of the experimental variation in enclosure dimensions. Our findings justify the common practice of researchers to intuitively select an enclosure with dimensions assumed as "non-constraining". Hierarchical models can easily be designed to cope with limited sample size and bias introduced by deviating behavior of individuals. When limited data is available-a typical restriction of in-vivo motion analyses of non-model organisms-density distributions of the Bayesian GLM used here remain reliable and the hierarchical structure of the model optimally exploits all available information. We provide code to be adjusted to other research questions.
Collapse
|
20
|
Young JW, Shapiro LJ. Developments in development: What have we learned from primate locomotor ontogeny? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165 Suppl 65:37-71. [DOI: 10.1002/ajpa.23388] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jesse W. Young
- Department of Anatomy and NeurobiologyNortheast Ohio Medical University (NEOMED)Rootstown Ohio, 44272
| | - Liza J. Shapiro
- Department of AnthropologyUniversity of TexasAustin Texas, 78712
| |
Collapse
|
21
|
Druelle F, Young J, Berillon G. Behavioral implications of ontogenetic changes in intrinsic hand and foot proportions in olive baboons (Papio Anubis). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 165:65-76. [DOI: 10.1002/ajpa.23331] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 01/30/2023]
Affiliation(s)
- François Druelle
- Laboratory for Functional Morphology, Department of Biology; University of Antwerp, Universiteitsplein 1; Antwerpen, B-2610 Belgium
- Primatology Station of the CNRS, UPS 846, RD 56; Rousset-sur-Arc, 13790 France
| | - Jesse Young
- Department of Anatomy and Neurobiology; Northeast Ohio Medical University, NEOMED 4209 State Route 44; Rootstown Ohio 44272
| | - Gilles Berillon
- Primatology Station of the CNRS, UPS 846, RD 56; Rousset-sur-Arc, 13790 France
- Département de Préhistoire; Musée de L'Homme, UMR 7194 CNRS-MNHN, Place du Trocadéro; Paris, 75116 France
| |
Collapse
|
22
|
Shimada H, Kanai R, Kondo T, Yoshino-Saito K, Uchida A, Nakamura M, Ushiba J, Okano H, Ogihara N. Three-dimensional kinematic and kinetic analysis of quadrupedal walking in the common marmoset (Callithrix jacchus). Neurosci Res 2017; 125:11-20. [PMID: 28711711 DOI: 10.1016/j.neures.2017.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 11/28/2022]
Abstract
The common marmoset has recently gained a great deal of attention as an experimental primate model for biological science and medical research. To use the common marmoset for development of novel treatments and rehabilitation for locomotor disorders, it is crucial to understand fundamental baseline characteristics of locomotion in this species. Therefore, in the present study we performed kinematic and kinetic analyses of quadrupedal locomotion in this animal. A total of 14 common marmosets walking quadrupedally along a walkway were analyzed using synchronized high-speed cameras, with two force platforms set in the walkway. Our results demonstrated that the marmoset uses a lateral sequence walking pattern, in contrast to the macaque and other primates, which usually adopt a diagonal sequence pattern. Furthermore, peak vertical ground reaction force on the forelimb was larger than that on the hindlimb. The rate of energy recovery for quadrupedal walking in the common marmoset was much smaller than that in the macaque, indicating that the marmoset generally utilizes bouncing mechanics in locomotion, even though the duty factor is >0.5. This description of locomotor characteristics of intact marmosets may serve as a basis for comparative analyses of changes in gait due to rehabilitation and regenerative treatments.
Collapse
Affiliation(s)
- Hikaru Shimada
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Ryogo Kanai
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Takahiro Kondo
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Kimika Yoshino-Saito
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Akito Uchida
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Naomichi Ogihara
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| |
Collapse
|
23
|
Intra-individual variation in hand postures during terrestrial locomotion in Japanese macaques (Macaca fuscata). Primates 2017; 59:61-68. [DOI: 10.1007/s10329-017-0619-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/08/2017] [Indexed: 10/19/2022]
|
24
|
Holowka NB, O'Neill MC, Thompson NE, Demes B. Chimpanzee ankle and foot joint kinematics: Arboreal versus terrestrial locomotion. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:131-147. [DOI: 10.1002/ajpa.23262] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/27/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Nicholas B. Holowka
- Department of Human Evolutionary BiologyHarvard UniversityCambridge Massachusetts02138
- Department of AnthropologyStony Brook UniversityStony Brook New York11795
| | - Matthew C. O'Neill
- Department of Basic Medical SciencesUniversity of Arizona College of Medicine‐PhoenixPhoenix Arizona85004
| | - Nathan E. Thompson
- Department of AnatomyNYIT College of Osteopathic MedicineOld Westbury New York11568
- Department of Anatomical SciencesStony Brook University School of MedicineStony Brook New York11795
| | - Brigitte Demes
- Department of Anatomical SciencesStony Brook University School of MedicineStony Brook New York11795
| |
Collapse
|
25
|
Walker J, MacLean J, Hatsopoulos NG. The marmoset as a model system for studying voluntary motor control. Dev Neurobiol 2016; 77:273-285. [DOI: 10.1002/dneu.22461] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Jeff Walker
- Committee on Computational Neuroscience, University of Chicago; Chicago Illinois 60637
| | - Jason MacLean
- Committee on Computational Neuroscience, University of Chicago; Chicago Illinois 60637
- Department of Neurobiology; University of Chicago; Chicago Illinois 60637
| | - Nicholas G. Hatsopoulos
- Committee on Computational Neuroscience, University of Chicago; Chicago Illinois 60637
- Department of Organismal Biology and Anatomy; University of Chicago; Chicago Illinois 60637
| |
Collapse
|
26
|
Young JW, Stricklen BM, Chadwell BA. Effects of support diameter and compliance on common marmoset (Callithrix jacchus) gait kinematics. J Exp Biol 2016; 219:2659-72. [DOI: 10.1242/jeb.140939] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Locomotion is precarious in an arboreal habitat, where supports can vary in both diameter and level of compliance. Several previous studies have evaluated the influence of substrate diameter on the locomotor performance of arboreal quadrupeds. The influence of substrate compliance, however, has been mostly unexamined. Here, we used a multifactorial experimental design to investigate how perturbations in both diameter and compliance affect the gait kinematics of marmosets (Callithrix jacchus; N=2) moving over simulated arboreal substrates. We used 3D-calibrated video to quantify marmoset locomotion over a horizontal trackway consisting of variably sized poles (5, 2.5 and 1.25 cm in diameter), analyzing a total of 120 strides. The central portion of the trackway was either immobile or mounted on compliant foam blocks, depending on condition. We found that narrowing diameter and increasing compliance were both associated with relatively longer substrate contact durations, though adjustments to diameter were often inconsistent relative to compliance-related adjustments. Marmosets also responded to narrowing diameter by reducing speed, flattening center of mass (CoM) movements and dampening support displacement on the compliant substrate. For the subset of strides on the compliant support, we found that speed, contact duration and CoM amplitude explained >60% of the variation in substrate displacement over a stride, suggesting a direct performance advantage to these kinematic adjustments. Overall, our results show that compliant substrates can exert a significant influence on gait kinematics. Substrate compliance, and not just support diameter, should be considered a critical environmental variable when evaluating locomotor performance in arboreal quadrupeds.
Collapse
Affiliation(s)
- Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
- Musculoskeletal Biology Research Focus Area, NEOMED, Rootstown, OH 44272, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| | - Bethany M. Stricklen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Brad A. Chadwell
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| |
Collapse
|
27
|
Shapiro LJ, Kemp AD, Young JW. Effects of Substrate Size and Orientation on Quadrupedal Gait Kinematics in Mouse Lemurs (
Microcebus murinus
). ACTA ACUST UNITED AC 2016; 325:329-43. [DOI: 10.1002/jez.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Liza J. Shapiro
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Addison D. Kemp
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Jesse W. Young
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| |
Collapse
|
28
|
Patel BA, Wallace IJ, Boyer DM, Granatosky MC, Larson SG, Stern JT. Distinct functional roles of primate grasping hands and feet during arboreal quadrupedal locomotion. J Hum Evol 2015; 88:79-84. [DOI: 10.1016/j.jhevol.2015.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
|
29
|
Young JW, Russo GA, Fellmann CD, Thatikunta MA, Chadwell BA. Tail function during arboreal quadrupedalism in squirrel monkeys (Saimiri boliviensis) and tamarins (Saguinus oedipus). ACTA ACUST UNITED AC 2015; 323:556-66. [PMID: 26173756 DOI: 10.1002/jez.1948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 11/11/2022]
Abstract
The need to maintain stability on narrow branches is often presented as a major selective force shaping primate morphology, with adaptations to facilitate grasping receiving particular attention. The functional importance of a long and mobile tail for maintaining arboreal stability has been comparatively understudied. Tails can facilitate arboreal balance by acting as either static counterbalances or dynamic inertial appendages able to modulate whole-body angular momentum. We investigate associations between tail use and inferred grasping ability in two closely related cebid platyrrhines-cotton-top tamarins (Saguinus oedipus) and black-capped squirrel monkeys (Saimiri boliviensis). Using high-speed videography of captive monkeys moving on 3.2 cm diameter poles, we specifically test the hypothesis that squirrel monkeys (characterized by grasping extremities with long digits) will be less dependent on the tail for balance than tamarins (characterized by claw-like nails, short digits, and a reduced hallux). Tamarins have relatively longer tails than squirrel monkeys, move their tails through greater angular amplitudes, at higher angular velocities, and with greater angular accelerations, suggesting dynamic use of tail to regulate whole-body angular momentum. By contrast, squirrel monkeys generally hold their tails in a comparatively stationary posture and at more depressed angles, suggesting a static counterbalancing mechanism. This study, the first empirical test of functional tradeoffs between grasping ability and tail use in arboreal primates, suggests a critical role for the tail in maintaining stability during arboreal quadrupedalism. Our findings have the potential to inform our functional understanding of tail loss during primate evolution.
Collapse
Affiliation(s)
- Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Gabrielle A Russo
- Department of Anthropology, Stony Brook University, Stony Brook, New York
| | - Connie D Fellmann
- Department of Anthropology, Colorado State University, Fort Collins, Colorado
| | - Meena A Thatikunta
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio
| | - Brad A Chadwell
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio
| |
Collapse
|