1
|
Druelle F, Ghislieri M, Molina-Vila P, Rimbaud B, Agostini V, Berillon G. A comparative study of muscle activity and synergies during walking in baboons and humans. J Hum Evol 2024; 189:103513. [PMID: 38401300 DOI: 10.1016/j.jhevol.2024.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Bipedal locomotion was a major functional change during hominin evolution, yet, our understanding of this gradual and complex process remains strongly debated. Based on fossil discoveries, it is possible to address functional hypotheses related to bipedal anatomy, however, motor control remains intangible with this approach. Using comparative models which occasionally walk bipedally has proved to be relevant to shed light on the evolutionary transition toward habitual bipedalism. Here, we explored the organization of the neuromuscular control using surface electromyography (sEMG) for six extrinsic muscles in two baboon individuals when they walk quadrupedally and bipedally on the ground. We compared their muscular coordination to five human subjects walking bipedally. We extracted muscle synergies from the sEMG envelopes using the non-negative matrix factorization algorithm which allows decomposing the sEMG data in the linear combination of two non-negative matrixes (muscle weight vectors and activation coefficients). We calculated different parameters to estimate the complexity of the sEMG signals, the duration of the activation of the synergies, and the generalizability of the muscle synergy model across species and walking conditions. We found that the motor control strategy is less complex in baboons when they walk bipedally, with an increased muscular activity and muscle coactivation. When comparing the baboon bipedal and quadrupedal pattern of walking to human bipedalism, we observed that the baboon bipedal pattern of walking is closer to human bipedalism for both baboons, although substantial differences remain. Overall, our findings show that the muscle activity of a non-adapted biped effectively fulfills the basic mechanical requirements (propulsion and balance) for walking bipedally, but substantial refinements are possible to optimize the efficiency of bipedal locomotion. In the evolutionary context of an expanding reliance on bipedal behaviors, even minor morphological alterations, reducing muscle coactivation, could have faced strong selection pressure, ultimately driving bipedal evolution in hominins.
Collapse
Affiliation(s)
- François Druelle
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France; Functional Morphology Laboratory, University of Antwerp, Campus Drie Eiken (Building D), Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Marco Ghislieri
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Pablo Molina-Vila
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Brigitte Rimbaud
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Valentina Agostini
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Gilles Berillon
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| |
Collapse
|
2
|
Aerts P, Goyens J, Berillon G, D'Août K, Druelle F. From quadrupedal to bipedal walking 'on the fly': the mechanics of dynamical mode transition in primates. J Exp Biol 2023; 226:286677. [PMID: 36657384 DOI: 10.1242/jeb.244792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023]
Abstract
We investigated how baboons transition from quadrupedal to bipedal walking without any significant interruption in their forward movement (i.e. transition 'on the fly'). Building on basic mechanical principles (momentum only changes when external forces/moments act on the body), insights into possible strategies for such a dynamical mode transition are provided and applied first to the recorded planar kinematics of an example walking sequence (including several continuous quadrupedal, transition and subsequent bipedal steps). Body dynamics are calculated from the kinematics. The strategy used in this worked example boils down to: crouch the hind parts and sprint them underneath the rising body centre of mass. Forward accelerations are not in play. Key characteristics of this transition strategy were extracted: progression speed, hip height, step duration (frequency), foot positioning at touchdown with respect to the hip and the body centre of mass (BCoM), and congruity between the moments of the ground reaction force about the BCoM and the rate of change of the total angular moment. Statistical analyses across the full sample (15 transitions of 10 individuals) confirm this strategy is always used and is shared across individuals. Finally, the costs (in J kg-1 m-1) linked to on the fly transitions were estimated. The costs are approximately double those of both the preceding quadrupedal and subsequent bipedal walking. Given the short duration of the transition as such (<1 s), it is argued that the energetic costs to change walking posture on the fly are negligible when considered in the context of the locomotor repertoire.
Collapse
Affiliation(s)
- Peter Aerts
- Laboratory of Functional Morphology, University of Antwerp, 2610 Antwerp, Belgium.,Department of Movement and Sports Sciences, University of Ghent, 9000 Ghent, Belgium
| | - Jana Goyens
- Laboratory of Functional Morphology, University of Antwerp, 2610 Antwerp, Belgium
| | - Gilles Berillon
- HNHP (UMR 7194), CNRS-MNHN-UPVD, 75116 Paris, France.,Primatology Station of the CNRS (UAR 846), 13790 Rousset, France
| | - Kristiaan D'Août
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
| | - François Druelle
- Laboratory of Functional Morphology, University of Antwerp, 2610 Antwerp, Belgium.,HNHP (UMR 7194), CNRS-MNHN-UPVD, 75116 Paris, France.,Primatology Station of the CNRS (UAR 846), 13790 Rousset, France
| |
Collapse
|
3
|
Druelle F, Özçelebi J, Marchal F, Berillon G. Development of bipedal walking in olive baboons, Papio anubis: A kinematic analysis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:719-734. [PMID: 36787778 DOI: 10.1002/ajpa.24454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/24/2021] [Accepted: 11/07/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Although extant nonhuman primates are not habitual bipeds, they are able to walk bipedally from an early age. In humans, children improve their walking skills through developmental processes and learning experience. In nonhuman primates, infants do not routinely experience bipedalism and their musculoskeletal system gradually specializes for other locomotor modes. The aim of this study is to explore the development of occasional bipedal walking in olive baboon and to test whether the postural adjustments change with age. MATERIALS AND METHODS We collected kinematics and spatiotemporal parameters of bipedal gait in an ontogenetic sample of 24 baboons. Data were collected at the primatology station of the CNRS (France) and a total of 47 bipedal strides were extracted for the present analysis. RESULTS Adults and adolescents walk bipedally in the same way, and the average kinematic pattern is similar across the age-classes. Infants walk bipedally with longer duty factor, they present larger movement amplitude of the thigh and the amplitude of the knee joint decreases with speed. In contrast, older baboons increase the amplitude of the knee and ankle joints with speed. DISCUSSION In a non-adapted biped, the postural adjustments of bipedal walking vary with age. In infant baboons, the balance requirements are likely to be higher and these are solved by adopting a "blocking strategy". In older baboons, the postural adjustments are focused on the lower limb and the movements increase with speed. These results may echo, in some respects, the developmental sequence of the intersegmental coordination described in the ontogeny of human locomotion.
Collapse
Affiliation(s)
- François Druelle
- UMR 7194 (Histoire Naturelle de l'Homme Préhistorique), CNRS-Muséum National d'Histoire Naturelle-UPVD, Paris, France.,Functional Morphology Laboratory, University of Antwerp, Antwerp, Belgium.,UAR 846, Primatology Station-Celphedia, CNRS, Rousset, France
| | - Jonathan Özçelebi
- UMR 7194 (Histoire Naturelle de l'Homme Préhistorique), CNRS-Muséum National d'Histoire Naturelle-UPVD, Paris, France.,UMR 7268 (Anthropologie Bio-Culturelle, Droit, Ethique et Santé), CNRS-Faculté de Médecine, Marseille, France
| | - François Marchal
- UMR 7268 (Anthropologie Bio-Culturelle, Droit, Ethique et Santé), CNRS-Faculté de Médecine, Marseille, France
| | - Gilles Berillon
- UMR 7194 (Histoire Naturelle de l'Homme Préhistorique), CNRS-Muséum National d'Histoire Naturelle-UPVD, Paris, France.,UAR 846, Primatology Station-Celphedia, CNRS, Rousset, France
| |
Collapse
|
4
|
Druelle F, Schoonaert K, Aerts P, Nauwelaerts S, Stevens JMG, D'Août K. Segmental morphometrics of bonobos (Pan paniscus): are they really different from chimpanzees (Pan troglodytes)? J Anat 2018; 233:843-853. [PMID: 30294787 PMCID: PMC6231171 DOI: 10.1111/joa.12894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2018] [Indexed: 11/28/2022] Open
Abstract
The inertial properties of body segments reflect performance and locomotor habits in primates. While Pan paniscus is generally described as more gracile, lighter in body mass, and as having relatively longer and heavier hindlimbs than Pan troglodytes, both species exhibit very similar patterns of (quadrupedal and bipedal) kinematics, but show slightly different locomotor repertoires. We used a geometric model to estimate the inertial properties for all body segments (i.e. head, trunk, upper and lower arms, hand, thigh, shank and foot) using external length and diameter measurements of 12 anaesthetized bonobos (eight adults and four immatures). We also calculated whole limb inertial properties. When we compared absolute and relative segment morphometric and inertial variables between bonobos and chimpanzees, we found that adult bonobos are significantly lighter than adult chimpanzees. The bonobo is also shorter in head length, upper and lower arm lengths, and foot length, and is generally lighter in most absolute segment mass values (except head and hand). In contrast, the bonobo has a longer trunk. When scaled relative to body mass, most differences disappear between the two species. Only the longer trunk and the shorter head of the bonobo remain apparent, as well as the lighter thigh compared with the chimpanzee. We found similar values of natural pendular periods of the limbs in both species, despite differences in absolute limb lengths, masses, mass centres (for the hindlimb) and moments of inertia. While our data contradict the commonly accepted view that bonobos have relatively longer and heavier hindlimbs than chimpanzees, they are consistent with the observed similarities in the quadrupedal and bipedal kinematics between these species. The morphological differences between both species are more subtle than those previously described from postcranial osteological materials.
Collapse
Affiliation(s)
- François Druelle
- Laboratory for Functional MorphologyUniversity of AntwerpWilrijkBelgium
| | - Kirsten Schoonaert
- Laboratory for Functional MorphologyUniversity of AntwerpWilrijkBelgium
- Antwerp Zoo Centre for Research and ConservationAntwerpBelgium
| | - Peter Aerts
- Laboratory for Functional MorphologyUniversity of AntwerpWilrijkBelgium
- Department of Movement and Sports SciencesUniversity of GhentGentBelgium
| | - Sandra Nauwelaerts
- Laboratory for Functional MorphologyUniversity of AntwerpWilrijkBelgium
- Antwerp Zoo Centre for Research and ConservationAntwerpBelgium
| | - Jeroen M. G. Stevens
- Antwerp Zoo Centre for Research and ConservationAntwerpBelgium
- Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Kristiaan D'Août
- Behavioural Ecology and Ecophysiology GroupUniversity of AntwerpWilrijkBelgium
| |
Collapse
|
5
|
Abstract
Positional behavior (posture and locomotion) studies are a category of primatological and anthropological field research that attempts to describe movement capabilities and expressed behavior within an evolutionary, ecological, and/or morphological context. This area of research is appealing because it allows the integration of morphological data (capabilities) with expressed behaviors and provides a basis for understanding fossil reconstruction. Because positional behavior acts as a mediator between the biology and the environment, it offers information about virtually all aspects of a primate's life. We are currently undergoing an increase in the number of field projects focusing on the development of positional behaviors in immature primates, and results suggest that in many species positional competence develops relatively early. In this review, I present information on recent positional behavior studies with a focus on how positional behavior develops in young primates. Research on immature primates suggests that natural selection operates at all life stages to influence survival and that the adult positional repertoire likely reflects the challenges confronted by younger individuals.
Collapse
Affiliation(s)
- Michelle Bezanson
- Department of Anthropology, Santa Clara University, Santa Clara, California 95053
| |
Collapse
|
6
|
Druelle F, Aerts P, Berillon G. The origin of bipedality as the result of a developmental by-product: The case study of the olive baboon (Papio anubis). J Hum Evol 2017; 113:155-161. [PMID: 29054165 DOI: 10.1016/j.jhevol.2017.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/01/2022]
Abstract
In this paper, we point to the importance of considering infancy in the emergence of new locomotor modes during evolution, and particularly when considering bipedal walking. Indeed, because infant primates commonly exhibit a more diverse posturo-locomotor repertoire than adults, the developmental processes of locomotion represent an important source of variation upon which natural selection may act. We have had the opportunity to follow the development of locomotion in captive individuals of a committed quadrupedal primate, the olive baboon (Papio anubis). We observed six infants at two different stages of their development. In total, we were able to analyze the temporal parameters of 65 bipedal steps, as well as their behavioral components. Our results show that while the basic temporal aspects of the bipedal walking gait (i.e., duty factor, dimensionless frequency, and hind lag) do not change during development, the baboon is able to significantly improve the coordination pattern between hind limbs. This probably influences the bout duration of spontaneous bipedal walking. During the same developmental stage, the interlimb coordination in quadrupedal walking is improved and the proportion of quadrupedal behaviors increases significantly. Therefore, the quadrupedal pattern of primates does not impede the developmental acquisition of bipedal behaviors. This may suggest that the same basic mechanism is responsible for controlling bipedal and quadrupedal locomotion, i.e., that in non-human primates, the neural networks for quadrupedal locomotion are also employed to perform (occasional) bipedal walking. In this context, a secondary locomotor mode (e.g., bipedalism) experienced during infancy as a by-product of locomotor development may lead to evolutionary novelties when under appropriate selective pressures.
Collapse
Affiliation(s)
- François Druelle
- Functional Morphology Laboratory, Biology Department, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; UMR 7194 CNRS, Département de Préhistoire, Muséum National D'Histoire Naturelle, 1 Rue René Panhard, 75013 Paris, France; UPS 846 CNRS, Primatology Station, RD 56, 13790 Rousset-sur-Arc, France.
| | - Peter Aerts
- Functional Morphology Laboratory, Biology Department, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Biomechanics and Motor Control of Human Movement, Department of Movement and Sport Sciences, University of Ghent, Watersportlaan 2, 9000 Gent, Belgium
| | - Gilles Berillon
- UMR 7194 CNRS, Département de Préhistoire, Muséum National D'Histoire Naturelle, 1 Rue René Panhard, 75013 Paris, France; UPS 846 CNRS, Primatology Station, RD 56, 13790 Rousset-sur-Arc, France
| |
Collapse
|
7
|
Druelle F, Aerts P, D'Août K, Moulin V, Berillon G. Segmental morphometrics of the olive baboon (Papio anubis): a longitudinal study from birth to adulthood. J Anat 2017; 230:805-819. [PMID: 28294323 PMCID: PMC5442150 DOI: 10.1111/joa.12602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2017] [Indexed: 12/01/2022] Open
Abstract
The linear dimensions and inertial characteristics of the body are important in locomotion and they change considerably during the ontogeny of animals, including humans. This longitudinal and ontogenetic study has produced the largest dataset to date of segmental morphometrics in a Catarrhini species, the olive baboon. The objectives of the study were to quantify the changes in body linear and inertial dimensions and to explore their (theoretical) mechanical significance for locomotion. We took full-body measurements of captive individuals at regular intervals. Altogether, 14 females and 16 males were followed over a 7-year period, i.e. from infancy to adulthood. Our results show that individual patterns of growth are very consistent and follow the general growth pattern previously described in olive baboons. Furthermore, we obtained similar growth curve structures for segment lengths and masses, although the respective time scales were slightly different. The most significant changes in body morphometrics occurred during the first 2 years of life and concerned the distal parts of the body. Females and males were similar in size and shape at birth. The rate and duration of growth produced substantial size-related differences throughout ontogeny, while body shapes remained very similar between the sexes. We also observed significant age-related variations in limb composition, with a proximal shift of the centre of mass within the limbs, mainly due to changes in mass distribution and in the length of distal segments. Finally, we observed what we hypothesize to be 'early biomechanical optimization' of the limbs for quadrupedal walking. This is due to a high degree of convergence between the limbs' natural pendular periods in infants, which may facilitate the onset of quadrupedal walking. Furthermore, the mechanical significance of the morphological changes observed in growing baboons may be related to changing functional demands with the onset of autonomous (quadrupedal) locomotion. From a wider perspective, these data provide unique insights into questions surrounding both the processes of locomotor development in primates and how these processes might evolve.
Collapse
Affiliation(s)
- François Druelle
- Laboratory for Functional MorphologyBiology DepartmentUniversity of AntwerpAntwerpBelgium
- Département de PréhistoireMusée de l'HommeUMR 7194 CNRS‐MNHNParisFrance
- Primatology StationUPS 846 CNRSRousset‐sur‐ArcFrance
| | - Peter Aerts
- Laboratory for Functional MorphologyBiology DepartmentUniversity of AntwerpAntwerpBelgium
- Biomechanics and Motor Control of Human MovementDepartment of Movement and Sport SciencesUniversity of GhentGhentBelgium
| | - Kristiaan D'Août
- Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | | | - Gilles Berillon
- Département de PréhistoireMusée de l'HommeUMR 7194 CNRS‐MNHNParisFrance
- Primatology StationUPS 846 CNRSRousset‐sur‐ArcFrance
| |
Collapse
|
8
|
Druelle F, Aerts P, Berillon G. Effect of body mass distribution on the ontogeny of positional behaviors in non-human primates: Longitudinal follow-up of infant captive olive baboons (Papio anubis). Am J Primatol 2016; 78:1201-1221. [DOI: 10.1002/ajp.22575] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/20/2016] [Accepted: 06/05/2016] [Indexed: 11/06/2022]
Affiliation(s)
- François Druelle
- Department of Biology, Functional Morphology Laboratory; University of Antwerp; Antwerpen Belgium
- Primatology Station CNRS; Rousset-sur-Arc France
- UPR 2147 CNRS; Dynamique de l'Evolution Humaine; Paris France
| | - Peter Aerts
- Department of Biology, Functional Morphology Laboratory; University of Antwerp; Antwerpen Belgium
- Department of Movement and Sport Sciences, Biomechanics and Motor Control of Human Movement; University of Ghent; Gent Belgium
| | - Gilles Berillon
- Primatology Station CNRS; Rousset-sur-Arc France
- UPR 2147 CNRS; Dynamique de l'Evolution Humaine; Paris France
- UMR 7194 du CNRS, Département de Préhistoire; Muséum National d'Histoire Naturelle; Paris France
| |
Collapse
|