1
|
Granatosky MC, Dickinson E, Young MW, Lemelin P. A coati conundrum: how variation in levels of arboreality influences gait mechanics among three musteloid species. J Exp Biol 2024; 227:jeb247630. [PMID: 39318348 DOI: 10.1242/jeb.247630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
The gait characteristics associated with arboreal locomotion have been frequently discussed in the context of primate evolution, wherein they present as a trio of distinctive features: a diagonal-sequence, diagonal-couplet gait pattern; a protracted arm at forelimb touchdown; and a hindlimb-biased weight support pattern. The same locomotor characteristics have been found in the woolly opossum, a fine-branch arborealist similar in ecology to some small-bodied primates. To further our understanding of the functional link between arboreality and primate-like locomotion, we present comparative data collected in the laboratory for three musteloid taxa. Musteloidea represents an ecologically diverse superfamily spanning numerous locomotor specializations that includes the highly arboreal kinkajou (Potos flavus), mixed arboreal/terrestrial red pandas (Ailurus fulgens) and primarily terrestrial coatis (Nasua narica). This study applies a combined kinetic and kinematic approach to compare the locomotor behaviors of these three musteloid taxa, representing varying degrees of arboreal specialization. We observed highly arboreal kinkajous to share many locomotor traits with primates. In contrast, red pandas (mixed terrestrial/arborealist) showed gait characteristics found in most non-primate mammals. Coatis, however, demonstrated a unique combination of locomotor traits, combining a lateral-sequence, lateral-couplet gait pattern typical of long-legged, highly terrestrial mammals, varying degrees of arm protraction, and a hindlimb-biased weight support pattern typical of most primates and woolly opossums. We conclude that the three gait characteristics traditionally used to describe arboreal walking in primates can occur independently from one another and not necessarily as a suite of interdependent characteristics, a phenomenon that has been reported for some primates.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Duke Lemur Center, Duke University, Durham, NC 27705, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Pierre Lemelin
- Division of Anatomy, Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2H7
| |
Collapse
|
2
|
Druelle F, Ghislieri M, Molina-Vila P, Rimbaud B, Agostini V, Berillon G. A comparative study of muscle activity and synergies during walking in baboons and humans. J Hum Evol 2024; 189:103513. [PMID: 38401300 DOI: 10.1016/j.jhevol.2024.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Bipedal locomotion was a major functional change during hominin evolution, yet, our understanding of this gradual and complex process remains strongly debated. Based on fossil discoveries, it is possible to address functional hypotheses related to bipedal anatomy, however, motor control remains intangible with this approach. Using comparative models which occasionally walk bipedally has proved to be relevant to shed light on the evolutionary transition toward habitual bipedalism. Here, we explored the organization of the neuromuscular control using surface electromyography (sEMG) for six extrinsic muscles in two baboon individuals when they walk quadrupedally and bipedally on the ground. We compared their muscular coordination to five human subjects walking bipedally. We extracted muscle synergies from the sEMG envelopes using the non-negative matrix factorization algorithm which allows decomposing the sEMG data in the linear combination of two non-negative matrixes (muscle weight vectors and activation coefficients). We calculated different parameters to estimate the complexity of the sEMG signals, the duration of the activation of the synergies, and the generalizability of the muscle synergy model across species and walking conditions. We found that the motor control strategy is less complex in baboons when they walk bipedally, with an increased muscular activity and muscle coactivation. When comparing the baboon bipedal and quadrupedal pattern of walking to human bipedalism, we observed that the baboon bipedal pattern of walking is closer to human bipedalism for both baboons, although substantial differences remain. Overall, our findings show that the muscle activity of a non-adapted biped effectively fulfills the basic mechanical requirements (propulsion and balance) for walking bipedally, but substantial refinements are possible to optimize the efficiency of bipedal locomotion. In the evolutionary context of an expanding reliance on bipedal behaviors, even minor morphological alterations, reducing muscle coactivation, could have faced strong selection pressure, ultimately driving bipedal evolution in hominins.
Collapse
Affiliation(s)
- François Druelle
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France; Functional Morphology Laboratory, University of Antwerp, Campus Drie Eiken (Building D), Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Marco Ghislieri
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Pablo Molina-Vila
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Brigitte Rimbaud
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Valentina Agostini
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Gilles Berillon
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| |
Collapse
|
3
|
Boulinguez-Ambroise G, Dunham N, Phelps T, Mazonas T, Nguyen P, Bradley-Cronkwright M, Boyer DM, Yapuncich GS, Zeininger A, Schmitt D, Young JW. Jumping performance in tree squirrels: Insights into primate evolution. J Hum Evol 2023; 180:103386. [PMID: 37209637 DOI: 10.1016/j.jhevol.2023.103386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/22/2023]
Abstract
Morphological traits suggesting powerful jumping abilities are characteristic of early crown primate fossils. Because tree squirrels lack certain 'primatelike' grasping features but frequently travel on the narrow terminal branches of trees, they make a viable extant model for an early stage of primate evolution. Here, we explore biomechanical determinants of jumping performance in the arboreal Eastern gray squirrel (Sciurus carolinensis, n = 3) as a greater understanding of the biomechanical strategies that squirrels use to modulate jumping performance could inform theories of selection for increased jumping ability during early primate evolution. We assessed vertical jumping performance by using instrumented force platforms upon which were mounted launching supports of various sizes, allowing us to test the influence of substrate diameter on jumping kinetics and performance. We used standard ergometric methods to quantify jumping parameters (e.g., takeoff velocity, total displacement, peak mechanical power) from force platform data during push-off. We found that tree squirrels display divergent mechanical strategies according to the type of substrate, prioritizing force production on flat ground versus center of mass displacement on narrower poles. As jumping represents a significant part of the locomotor behavior of most primates, we suggest that jumping from small arboreal substrates may have acted as a potential driver of the selection for elongated hindlimb segments in primates, allowing the center of mass to be accelerated over a longer distance-and thereby reducing the need for high substrate reaction forces.
Collapse
Affiliation(s)
- Grégoire Boulinguez-Ambroise
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA.
| | - Noah Dunham
- Division of Conservation and Science, Cleveland Metroparks Zoo, 3900 Wildlife Way, Cleveland, 44109, OH, USA; Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, 44106, OH, USA
| | - Taylor Phelps
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA
| | - Thomas Mazonas
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA
| | - Peter Nguyen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA
| | | | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, 27708, NC, USA
| | - Gabriel S Yapuncich
- Medical Education Administration, Duke University School of Medicine, 40 Duke Medicine Circle, Durham, 27710, NC, USA
| | - Angel Zeininger
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, 27708, NC, USA
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, 130 Science Drive, Durham, 27708, NC, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Road 44, Rootstown, 44272, OH, USA
| |
Collapse
|
4
|
Granatosky MC, Toussaint SLD, Young MW, Panyutina A, Youlatos D. The northern treeshrew (Scandentia: Tupaiidae: Tupaia belangeri) in the context of primate locomotor evolution: A comprehensive analysis of gait, positional, and grasping behavior. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:645-665. [PMID: 35451573 DOI: 10.1002/jez.2597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The locomotor behaviors of treeshrews are often reported as scurrying "squirrel-like" movements. As such, treeshrews have received little attention beyond passing remarks in regard to primate locomotor evolution. However, scandentians vary considerably in habitat and substrate use, thus categorizing all treeshrew locomotion based on data collected from a single species is inappropriate. This study presents data on gait characteristics, positional, and grasping behavior of the northern treeshrew (Tupaia belangeri) and compares these findings to the fat-tailed dwarf lemur (Cheirogaleus medius) to assess the role of treeshrews as a model for understanding the origins of primate locomotor and grasping evolution. We found that northern treeshrews were primarily arboreal and shared their activities between quadrupedalism, climbing and leaping in rates similar to fat-tailed dwarf lemurs. During quadrupedal locomotion, they exhibited a mixture of gait characteristics consistent with primates and other small-bodied non-primate mammals and demonstrated a hallucal grasping mode consistent with primates. These data reveal that northern treeshrews show a mosaic of primitive mammalian locomotor characteristics paired with derived primate features. Further, this study raises the possibility that many of the locomotor and grasping characteristics considered to be "uniquely" primate may ultimately be features consistent with Euarchonta.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | | | - Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Aleksandra Panyutina
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dionisios Youlatos
- Department of Zoology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Mossor AM, Young JW, Butcher MT. Does a suspensory lifestyle result in increased tensile strength?: Organ level material properties of sloth limb bones. J Exp Biol 2022; 225:274333. [PMID: 35142360 DOI: 10.1242/jeb.242866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/07/2022] [Indexed: 11/20/2022]
Abstract
The material composition of vertebrate connective tissue is highly conserved across taxa. Existing data suggest that the compressive and tensile strength of limb bones are very similar despite marked variation in limb posture and locomotor patterns. However, the material properties of limb bone tissue from suspensory taxa have not been formally evaluated. Sloths are nearly obligatory in their use of below-branch suspensory locomotion and posture, thus placing their limb bones and associated soft tissue structures under routine tensile loading. It is possible that sloth limb bones are modified for enhanced tensile strength, perhaps at the expense of compressive strength. Fore- and hindlimb bones of two-toed (Choloepus hoffmanni) and three-toed (Bradypus variegatus) sloths were tested in compression and bending to evaluate this hypothesis. Strength and elastic (Young's) modulus were similarly lower in sloth limb bones during both compression and bending, as compared to pronograde taxa. Ratios of peak bending strength to compressive strength additionally were elevated (sloths: 1.4-1.7; upright taxa: 0.6-1.2) for sloth limb bones. Overall, the material properties measured from the limb bones of tree sloths support our hypothesis of predicted function in a tensile limb system. Future studies should aim to directly test bones in tension to confirm indications of elevated axial tensile strength. Nevertheless, the results herein expand understanding of functional adaptation in mammalian tissue for a range of locomotor/postural behaviors that were previously unexplored.
Collapse
Affiliation(s)
- A M Mossor
- Department of Biological Sciences, Youngstown State University, Youngstown OH 44555, USA.,Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH, USA
| | - J W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown OH, USA
| | - M T Butcher
- Department of Biological Sciences, Youngstown State University, Youngstown OH 44555, USA
| |
Collapse
|
6
|
Botton-Divet L, Nyakatura JA. Vertical clinging and leaping induced evolutionary rate shifts in postcranial evolution of tamarins and marmosets (Primates, Callitrichidae). BMC Ecol Evol 2021; 21:132. [PMID: 34171986 PMCID: PMC8235625 DOI: 10.1186/s12862-021-01848-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Callitrichids comprise a diverse group of platyrrhine monkeys that are present across South and Central America. Their secondarily evolved small size and pointed claws allow them to cling to vertical trunks of a large diameter. Within callitrichids, lineages with a high affinity for vertical supports often engage in trunk-to-trunk leaping. This vertical clinging and leaping (VCL) differs from horizontal leaping (HL) in terms of the functional demands imposed on the musculoskeletal system, all the more so as HL often occurs on small compliant terminal branches. We used quantified shape descriptors (3D geometric morphometrics) and phylogenetically-informed analyses to investigate the evolution of the shape and size of the humerus and femur, and how this variation reflects locomotor behavior within Callitrichidae. RESULTS The humerus of VCL-associated species has a narrower trochlea compared with HL species. It is hypothesized that this contributes to greater elbow mobility. The wider trochlea in HL species appears to correspondingly provide greater stability to the elbow joint. The femur in VCL species has a smaller head and laterally-oriented distal condyles, possibly to reduce stresses during clinging. Similarly, the expanded lesser trochanters visible in VCL species provide a greater lever for the leg retractors and are thus also interpreted as an adaptation to clinging. Evolutionary rate shifts to faster shape and size changes of humerus and femur occurred in the Leontocebus clade when a shift to slower rates occurred in the Saguinus clade. CONCLUSIONS Based on the study of evolutionary rate shifts, the transition to VCL behavior within callitrichids (specifically the Leontocebus clade) appears to have been an opportunity for radiation, rather than a specialization that imposed constraints on morphological diversity. The study of the evolution of callitrichids suffers from a lack of comparative analyses of limb mechanics during trunk-to-trunk leaping, and future work in this direction would be of great interest.
Collapse
Affiliation(s)
- Léo Botton-Divet
- AG Vergleichende Zoologie, Institut Für Biologie, Humboldt-Universität Zu Berlin, Philippstr. 13, 10115, Berlin, Germany.
| | - John A Nyakatura
- AG Vergleichende Zoologie, Institut Für Biologie, Humboldt-Universität Zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| |
Collapse
|
7
|
Mossor AM, Austin BL, Avey-Arroyo JA, Butcher MT. A Horse of a Different Color?: Tensile Strength and Elasticity of Sloth Flexor Tendons. Integr Org Biol 2021; 2:obaa032. [PMID: 33796818 DOI: 10.1093/iob/obaa032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tendons must be able to withstand the tensile forces generated by muscles to provide support while avoiding failure. The properties of tendons in mammal limbs must therefore be appropriate to accommodate a range of locomotor habits and posture. Tendon collagen composition provides resistance to loading that contributes to tissue strength which could, however, be modified to not exclusively confer large strength and stiffness for elastic energy storage/recovery. For example, sloths are nearly obligate suspenders and cannot run, and due to their combined low metabolic rate, body temperature, and rate of digestion, they have an extreme need to conserve energy. It is possible that sloths have a tendon "suspensory apparatus" functionally analogous to that in upright ungulates, thus allowing for largely passive support of their body weight below-branch, while concurrently minimizing muscle contractile energy expenditure. The digital flexor tendons from the fore- and hindlimbs of two-toed (Choloepus hoffmanni) and three-toed (Bradypus variegatus) sloths were loaded in tension until failure to test this hypothesis. Overall, tensile strength and elastic (Young's) modulus of sloth tendons were low, and these material properties were remarkably similar to those of equine suspensory "ligaments." The results also help explain previous findings in sloths showing relatively low levels of muscle activation in the digital flexors during postural suspension and suspensory walking.
Collapse
Affiliation(s)
- A M Mossor
- Department of Biological Sciences, Youngstown State University, Youngstown, OH USA
| | - B L Austin
- Department of Biological Sciences, Youngstown State University, Youngstown, OH USA
| | | | - M T Butcher
- Department of Biological Sciences, Youngstown State University, Youngstown, OH USA
| |
Collapse
|
8
|
Perchalski B. Headfirst descent behaviors in a comparative sample of strepsirrhine primates. Am J Primatol 2021; 83:e23259. [PMID: 33792948 DOI: 10.1002/ajp.23259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/23/2021] [Accepted: 03/14/2021] [Indexed: 11/05/2022]
Abstract
The ability to safely ascend and descend is critical to the success of arboreal animals. Nonprimate mammals typically descend supports headfirst aided by their claws, but primates must rely on grasping, and use a variety of behaviors to move down within an arboreal environment, including headfirst and tailfirst descending. This study assesses hypothesized body mass limits on vertical headfirst descent and identifies approximate support orientations and diameters at which headfirst descent is ceased in a sample of nine strepsirrhines species ranging in mass from 0.06 to 4.5 kg. Species under 1 kg, arboreal quadrupeds Cheirogaleus medius and Microcebus murinus, and slow climber Nycticebus pygmaeus, always descended supports headfirst regardless of orientation and diameter as long as a grasp could be established. Arboreal quadrupedal species above 1 kg, Daubetonia madagascariensis, Eulemur coronatus, Eulemur mongoz, Lemur catta, and Varecia variegata differed in the orientation at which they ceased using headfirst descent and the types of alternative descending behaviors they employed. Lemur catta, a highly terrestrial species, started to employ tailfirst descents at 45° and completely stopped using headfirst descent on steeper and thicker supports. Other arboreal quadrupeds, D. madagascariensis, E. coronatus, E. mongoz, and V. variegata, began using tailfirst descent at 60°. The vertical clinging and leaping species Propithecus coquereli rarely engaged in above branch quadrupedalism, and individuals were observed using tailfirst descents on supports as shallow as 15°. This study shows the ways in which mass and anatomy may constrain use of headfirst descent through arboreal environments, and the alternate strategies strepsirrhine primates employ to descend.
Collapse
Affiliation(s)
- Bernadette Perchalski
- Graduate Program in Evolutionary Anthropology, Duke University, Durham, North Carolina, USA.,Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, USA
| |
Collapse
|
9
|
Not all fine-branch locomotion is equal: Grasping morphology determines locomotor performance on narrow supports. J Hum Evol 2020; 142:102767. [DOI: 10.1016/j.jhevol.2020.102767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023]
|
10
|
Graham M, Socha JJ. Going the distance: The biomechanics of gap-crossing behaviors. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2020; 333:60-73. [PMID: 31111626 DOI: 10.1002/jez.2266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/24/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
Abstract
The discontinuity of the canopy habitat is one of the principle differences between the terrestrial and arboreal environments. An animal's ability to cross gaps-to move from one support to another across an empty space-is influenced by both the physical structure of the gap and the animal's locomotor capabilities. In this review, we discuss the range of behaviors animals use to cross gaps. Focusing on the biomechanics of these behaviors, we suggest broad categorizations that facilitate comparisons between taxa. We also discuss the importance of gap distance in determining crossing behavior, and suggest several mechanical characteristics that may influence behavior choice, including the degree to which a behavior is dynamic, and whether or not the behavior is airborne. Overall, gap crossing is an important aspect of arboreal locomotion that deserves further in-depth attention, particularly given the ubiquity of gaps in the arboreal habitat.
Collapse
Affiliation(s)
- Mal Graham
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia
| | - John J Socha
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
11
|
Lewton KL, Patel BA. Calcaneal elongation and bone strength in leaping galagids. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:430-438. [PMID: 31710709 DOI: 10.1002/ajpa.23970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/06/2019] [Accepted: 10/27/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Small-bodied vertical clinging and leaping primates have elongated calcanei which enhance leap performance by optimizing leap velocity, distance, and acceleration, but at the expense of experiencing relatively large forces during takeoff and landing. This study tests the hypothesis that the elongated calcaneus of leaping galagids is adapted to resist larger and more stereotyped bending loads compared to more quadrupedal galagids. MATERIALS AND METHODS The calcanei of 14 individuals of Otolemur and 14 individuals of Galago (three species of each genus) were μCT scanned. Calcaneal cross-sectional properties (maximum and minimum second moments of area and polar section modulus) were obtained from a slice representing the 50% position of bone segment length and dimensionless ratios were created for each variable using calcaneal cuboid facet area as a proxy for body mass. RESULTS There were no significant differences in size-adjusted bending strength between Galago and Otolemur. Galago exhibited more elliptically shaped calcaneal cross sections, however, suggesting that its calcanei are more adapted to stereotyped loading regimes than those of Otolemur. DISCUSSION The results suggest that the calcaneus of specialized leapers is adapted to more stereotyped loading patterns. The lack of predicted bone strength differences between Galago and Otolemur may be related to body size differences between these taxa, or it may indicate that loads encountered by Galago during naturalistic leaping are not reflected in the available experimental force data.
Collapse
Affiliation(s)
- Kristi L Lewton
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biological Sciences, Human & Evolutionary Biology Section, University of Southern California, Los Angeles, California
| | - Biren A Patel
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biological Sciences, Human & Evolutionary Biology Section, University of Southern California, Los Angeles, California
| |
Collapse
|
12
|
Young JW, Jankord K, Saunders MM, Smith TD. Getting into Shape: Limb Bone Strength in Perinatal Lemur catta and Propithecus coquereli. Anat Rec (Hoboken) 2018; 303:250-264. [PMID: 30548126 DOI: 10.1002/ar.24045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/03/2018] [Accepted: 05/14/2018] [Indexed: 01/09/2023]
Abstract
Functional studies of skeletal anatomy are predicated on the fundamental assumption that form will follow function. For instance, previous studies have shown that the femora of specialized leaping primates are more robust than those of more generalized primate quadrupeds. Are such differences solely a plastic response to differential loading patterns during postnatal life, or might they also reflect more canalized developmental mechanisms present at birth? Here, we show that perinatal Lemur catta, an arboreal/terrestrial quadruped, have less robust femora than perinatal Propithecus coquereli, a closely related species specialized for vertical clinging and leaping (a highly unusual locomotor mode in which the hindlimbs are used to launch the animal between vertical tree trunks). These results suggest that functional differences in long bone cross-sectional dimensions are manifest at birth, belying simple interpretations of adult postcranial form as a direct record of loading patterns during postnatal life. Despite these significant differences in bone robusticity, we find that hindlimb bone mineralization, material properties, and measures of whole-bone strength generally overlap in perinatal L. catta and P. coquereli, indicating little differentiation in postcranial maturity at birth despite known differences in the pace of craniodental development between the species. In a broader perspective, our results likely reflect evolution acting during prenatal ontogeny. Even though primates are notable for relatively prolonged gestation and postnatal parental care, neonates are not buffered from selection, perhaps especially in the unpredictable and volatile environment of Madagascar. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 303:250-264, 2020. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, 44272
| | - Kathryn Jankord
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, 16057
| | - Marnie M Saunders
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio, 44325
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, 16057.,Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| |
Collapse
|
13
|
Snyder ML, Schmitt D. Effects of aging on the biomechanics of Coquerel's sifaka (Propithecus coquereli): Evidence of robustness to senescence. Exp Gerontol 2018; 111:235-240. [PMID: 30071287 DOI: 10.1016/j.exger.2018.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
It is well-known that as humans age they experience significant changes in gait including reduction in velocity and ground reaction forces and changes in leg mechanics. Progressive changes in gait can lead to disability and frailty, defined as an inability to carry out activities of daily living. This topic is relevant to basic understanding of the aging process and for clinical intervention. As such, studies of frailty can benefit from nonhuman animal models, yet little is known about gait frailty in nonhuman primates. This study examines a nonhuman primate model to evaluate its relevance to understanding human aging processes. To test the null hypothesis that age-related changes in joint function and gait do occur in primate models in a similar fashion to humans, a detailed gait analysis, including velocity, footfall timings, and vertical ground reaction forces, on bipedal locomotion was performed in Coquerel's sifaka (Propithecus coquereli), ranging in age from 5 years to 24 years. None of the spatiotemporal or kinetic gait variables measured was significantly correlated with age alone. There was a slight but significant reduction in locomotor velocity when animals were grouped into "young" and "old" categories. These data show that aging P. coquereli experience only subtle age-related changes, that were not nearly as extensive as reported in humans. This lack of change suggests that unlike humans, lemurs maintain gait competency at high levels, possibly because these animals maintain reproductive capacity close to their age of death and that frailty may be selected against, since gait disability would result in injury and death that would preclude independent living. Although nonhuman primates should experience age-related senescence, their locomotor performance should remain robust throughout their lifetimes, which raises questions about the use of primate models of gait disability, an area that deserves further investigation.
Collapse
Affiliation(s)
- Megan L Snyder
- Department of Evolutionary Anthropology, Duke University, Durham, NC, United States of America.
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, Durham, NC, United States of America
| |
Collapse
|
14
|
Fabre AC, Granatosky MC, Hanna JB, Schmitt D. Do forelimb shape and peak forces co-vary in strepsirrhines? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:602-614. [PMID: 30159895 DOI: 10.1002/ajpa.23688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 06/07/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVES In this study, we explore whether ground reaction forces recorded during horizontal walking co-vary with the shape of the long bones of the forelimb in strepsirrhines. To do so, we quantify (1) the shape of the shaft and articular surfaces of each long bone of the forelimb, (2) the peak vertical, mediolateral, and horizontal ground reaction forces applied by the forelimb during arboreal locomotion, and (3) the relationship between the shape of the forelimb and peak forces. MATERIALS AND METHODS Geometric morphometric approaches were used to quantify the shape of the bones. Kinetic data were collected during horizontal arboreal walking in eight species of strepsirrhines that show variation in habitual substrate use and morphology of the forelimb. These data were then used to explore the links between locomotor behavior, morphology, and mechanics using co-variation analyses in a phylogenetic framework. RESULTS Our results show significant differences between slow quadrupedal climbers (lorises), vertical clinger and leapers (sifaka), and active arboreal quadrupeds (ring-tailed lemur, ruffed lemur) in both ground reaction forces and the shape of the long bones of the forelimb, with the propulsive and medially directed peak forces having the highest impact on the shape of the humerus. Co-variation between long bone shape and ground reaction forces was detected in both the humerus and ulna even when accounting for differences in body mass. DISCUSSION These results demonstrate the importance of considering limb-loading beyond just peak vertical force, or substrate reaction force. A re-evaluation of osseous morphology and functional interpretations is necessary in light of these findings.
Collapse
Affiliation(s)
- Anne-Claire Fabre
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
- UMR 7179 C.N.R.S., M.N.H.N. Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
| | - Michael C Granatosky
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Jandy B Hanna
- Department of Biomedical Science, West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| |
Collapse
|
15
|
Dunham NT, McNamara A, Shapiro L, Hieronymus T, Young JW. A user's guide for the quantitative analysis of substrate characteristics and locomotor kinematics in free‐ranging primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:569-584. [DOI: 10.1002/ajpa.23686] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/30/2018] [Accepted: 07/07/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Noah T. Dunham
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| | - Allison McNamara
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Liza Shapiro
- Department of Anthropology University of Texas at Austin Austin Texas
| | - Tobin Hieronymus
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| | - Jesse W. Young
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio
| |
Collapse
|
16
|
Meyer MR, Woodward C, Tims A, Bastir M. Neck function in early hominins and suspensory primates: Insights from the uncinate process. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:613-637. [PMID: 29492962 DOI: 10.1002/ajpa.23448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Uncinate processes are protuberances on the cranial surface of subaxial cervical vertebrae that assist in stabilizing and guiding spinal motion. Shallow uncinate processes reduce cervical stability but confer an increased range of motion in clinical studies. Here we assess uncinate processes among extant primates and model cervical kinematics in early fossil hominins. MATERIALS AND METHODS We compare six fossil hominin vertebrae with 48 Homo sapiens and 99 nonhuman primates across 20 genera. We quantify uncinate morphology via geometric morphometric methods to understand how uncinate process shape relates to allometry, taxonomy, and mode of locomotion. RESULTS Across primates, allometry explains roughly 50% of shape variation, as small, narrow vertebrae feature the relatively tallest, most pronounced uncinate processes, whereas larger, wider vertebrae typically feature reduced uncinates. Taxonomy only weakly explains the residual variation, however, the association between Uncinate Shape and mode of locomotion is robust, as bipeds and suspensory primates occupy opposite extremes of the morphological continuum and are distinguished from arboreal generalists. Like humans, Australopithecus afarensis and Homo erectus exhibit shallow uncinate processes, whereas A. sediba resembles more arboreal taxa, but not fully suspensory primates. DISCUSSION Suspensory primates exhibit the most pronounced uncinates, likely to maintain visual field stabilization. East African hominins exhibit reduced uncinate processes compared with African apes and A. sediba, likely signaling different degrees of neck motility and modes of locomotion. Although soft tissues constrain neck flexibility beyond limits suggested by osteology alone, this study may assist in modeling cervical kinematics and positional behaviors in extinct taxa.
Collapse
Affiliation(s)
- Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, California 91737
| | - Charles Woodward
- Department of Anthropology, University of California, Berkeley, California 94720
| | - Amy Tims
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, California 95616
| | - Markus Bastir
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid 28006, Spain
| |
Collapse
|
17
|
Granatosky MC. Forelimb and hindlimb loading patterns during quadrupedal locomotion in the large flying fox (
Pteropus vampyrus
) and common vampire bat (
Desmodus rotundus
). J Zool (1987) 2018. [DOI: 10.1111/jzo.12538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- M. C. Granatosky
- Department of Organismal Biology and Anatomy University of Chicago Chicago IL USA
| |
Collapse
|
18
|
Granatosky MC, Fitzsimons A, Zeininger A, Schmitt D. Mechanisms for the functional differentiation of the propulsive and braking roles of the forelimbs and hindlimbs during quadrupedal walking in primates and felines. ACTA ACUST UNITED AC 2018; 221:jeb.162917. [PMID: 29170258 DOI: 10.1242/jeb.162917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022]
Abstract
During quadrupedal walking in most animals, the forelimbs play a net braking role, whereas the hindlimbs are net propulsive. However, the mechanism by which this differentiation occurs remains unclear. Here, we test two models to explain this pattern using primates and felines: (1) the horizontal strut effect (in which limbs are modeled as independent struts), and (2) the linked strut model (in which limbs are modeled as linked struts with a center of mass in between). Video recordings were used to determine point of contact, timing of mid-stance, and limb protraction/retraction duration. Single-limb forces were used to calculate contact time, impulses and the proportion of the stride at which the braking-to-propulsive transition (BP) occurred for each limb. We found no association between the occurrence of the BP and mid-stance, little influence of protraction and retraction duration on the braking-propulsive function of a limb, and a causative relationship between vertical force distribution between limbs and the patterns of horizontal forces. These findings reject the horizontal strut effect, and provide some support for the linked strut model, although predictions were not perfectly matched. We suggest that the position of the center of mass relative to limb contact points is a very important, but not the only, factor driving functional differentiation of the braking and propulsive roles of the limbs in quadrupeds. It was also found that primates have greater differences in horizontal impulse between their limbs compared with felines, a pattern that may reflect a fundamental arboreal adaptation in primates.
Collapse
Affiliation(s)
- Michael C Granatosky
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Aidan Fitzsimons
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Angel Zeininger
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
19
|
Granatosky MC, Schmitt D, Hanna J. Comparison of spatiotemporal gait characteristics between vertical climbing and horizontal walking in primates. J Exp Biol 2018; 222:jeb.185702. [DOI: 10.1242/jeb.185702] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022]
Abstract
During quadrupedal walking, most primates utilize diagonal sequence diagonal couplet gaits, large limb excursions, and hindlimb-biased limb-loading. These gait characteristics are thought to be basal to the Order, but the selective pressure underlying these gait changes remains unknown. Some researchers have examined these characteristics during vertical climbing and propose that primate quadrupedal gait characteristics may have arisen due to the mechanical challenges of moving on vertical supports. Unfortunately, these studies are usually limited in scope and do not account for varying strategies based on body size or phylogeny. Here, we test the hypothesis that the spatiotemporal gait characteristics that are used during horizontal walking in primates are also present during vertical climbing irrespective of body size and phylogeny. We examined footfall patterns, diagonality, speed, and stride length in eight species of primates across a range of body masses. We found that during vertical climbing primates slow down, keep more limbs in contact with the substrate at any one time, and increase the frequency of lateral sequence gaits compared to horizontal walking. Taken together these characteristics are assumed to increase stability during locomotion. Phylogenetic relatedness and body size differences have little influence on locomotor patterns observed across species. These data reject the idea that the suite of spatiotemporal gait features observed in primates during horizontal walking are in some way evolutionarily linked to selective pressures associated with mechanical requirements of vertical climbing. These results also highlight the importance of behavioral flexibility for negotiating the challenges of locomotion in an arboreal environment.
Collapse
Affiliation(s)
- Michael C. Granatosky
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Daniel Schmitt
- Evolutionary Anthropology, Duke University, Durham, NS, USA
| | - Jandy Hanna
- West Virginia School of Osteopathic Medicine, Biomedical Sciences, Lewisburg, WV, USA
| |
Collapse
|
20
|
Byron CD, Granatosky MC, Covert HH. An anatomical and mechanical analysis of the douc monkey (genus Pygathrix), and its role in understanding the evolution of brachiation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:801-820. [PMID: 29023639 DOI: 10.1002/ajpa.23320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 05/26/2017] [Accepted: 09/10/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Pygathrix is an understudied Asian colobine unusual among the Old World monkeys for its use of arm-swinging. Little data exists on the anatomy and mechanics of brachiation in this genus. Here, we consider this colobine to gain insight into the parallel evolution of suspensory behavior in primates. MATERIALS AND METHODS This study compares axial and appendicular morphological variables of Pygathrix with other Asian colobines. Additionally, to assess the functional consequences of Pygathrix limb anatomy, kinematic and kinetic data during arm-swinging are included to compare the douc monkey to other suspensory primates (Ateles and Hylobates). RESULTS Compared to more pronograde species, Pygathrix and Nasalis share morphology consistent with suspensory locomotion such as its narrower scapulae and elongated clavicles. More distally, Pygathrix displays a gracile humerus, radius, and ulna, and shorter olecranon process. During suspensory locomotion, Pygathrix, Ateles, and Hylobates all display mechanical convergence in limb loading and movements of the shoulder and elbow, but Pygathrix uses pronated wrist postures that include substantial radial deviation during arm-swinging. DISCUSSION The adoption of arm-swinging represents a major shift within at least three anthropoid clades and little data exist about its transition. Across species, few mechanical differences are observed during arm-swinging. Apparently, there are limited functional solutions to the challenges associated with moving bimanually below branches, especially in more proximal forelimb regions. Morphological data support this idea that the Pygathrix distal forelimb differs from apes more than its proximal end. These results can inform other studies of ape evolution, the pronograde to orthograde transition, and the convergent ways in which suspensory locomotion evolved in primates.
Collapse
Affiliation(s)
- C D Byron
- Department of Biology, Mercer University, Macon, Georgia
| | - M C Granatosky
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - H H Covert
- Department of Anthropology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
21
|
Hanna JB, Granatosky MC, Rana P, Schmitt D. The evolution of vertical climbing in primates: evidence from reaction forces. J Exp Biol 2017; 220:3039-3052. [PMID: 28620013 DOI: 10.1242/jeb.157628] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/09/2017] [Indexed: 11/20/2022]
Abstract
Vertical climbing is an essential behavior for arboreal animals, yet limb mechanics during climbing are poorly understood and rarely compared with those observed during horizontal walking. Primates commonly engage in both arboreal walking and vertical climbing, and this makes them an ideal taxa in which to compare these locomotor forms. Additionally, primates exhibit unusual limb mechanics compared with most other quadrupeds, with weight distribution biased towards the hindlimbs, a pattern that is argued to have evolved in response to the challenges of arboreal walking. Here we test an alternative hypothesis that functional differentiation between the limbs evolved initially as a response to climbing. Eight primate species were recorded locomoting on instrumented vertical and horizontal simulated arboreal runways. Forces along the axis of, and normal to, the support were recorded. During walking, all primates displayed forelimbs that were net braking, and hindlimbs that were net propulsive. In contrast, both limbs served a propulsive role during climbing. In all species, except the lorisids, the hindlimbs produced greater propulsive forces than the forelimbs during climbing. During climbing, the hindlimbs tends to support compressive loads, while the forelimb forces tend to be primarily tensile. This functional disparity appears to be body-size dependent. The tensile loading of the forelimbs versus the compressive loading of the hindlimbs observed during climbing may have important evolutionary implications for primates, and it may be the case that hindlimb-biased weight support exhibited during quadrupedal walking in primates may be derived from their basal condition of climbing thin branches.
Collapse
Affiliation(s)
- Jandy B Hanna
- West Virginia School of Osteopathic Medicine, Biomedical Sciences, Lewisburg, WV 24901, USA
| | - Michael C Granatosky
- Duke University, Evolutionary Anthropology, Durham, NC 27708, USA
- University of Chicago, Organismal Biology and Anatomy, Chicago, IL 60637, USA
| | - Pooja Rana
- West Virginia School of Osteopathic Medicine, Biomedical Sciences, Lewisburg, WV 24901, USA
| | - Daniel Schmitt
- Duke University, Evolutionary Anthropology, Durham, NC 27708, USA
| |
Collapse
|
22
|
Shimada H, Kanai R, Kondo T, Yoshino-Saito K, Uchida A, Nakamura M, Ushiba J, Okano H, Ogihara N. Three-dimensional kinematic and kinetic analysis of quadrupedal walking in the common marmoset (Callithrix jacchus). Neurosci Res 2017; 125:11-20. [PMID: 28711711 DOI: 10.1016/j.neures.2017.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 11/28/2022]
Abstract
The common marmoset has recently gained a great deal of attention as an experimental primate model for biological science and medical research. To use the common marmoset for development of novel treatments and rehabilitation for locomotor disorders, it is crucial to understand fundamental baseline characteristics of locomotion in this species. Therefore, in the present study we performed kinematic and kinetic analyses of quadrupedal locomotion in this animal. A total of 14 common marmosets walking quadrupedally along a walkway were analyzed using synchronized high-speed cameras, with two force platforms set in the walkway. Our results demonstrated that the marmoset uses a lateral sequence walking pattern, in contrast to the macaque and other primates, which usually adopt a diagonal sequence pattern. Furthermore, peak vertical ground reaction force on the forelimb was larger than that on the hindlimb. The rate of energy recovery for quadrupedal walking in the common marmoset was much smaller than that in the macaque, indicating that the marmoset generally utilizes bouncing mechanics in locomotion, even though the duty factor is >0.5. This description of locomotor characteristics of intact marmosets may serve as a basis for comparative analyses of changes in gait due to rehabilitation and regenerative treatments.
Collapse
Affiliation(s)
- Hikaru Shimada
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Ryogo Kanai
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Takahiro Kondo
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Kimika Yoshino-Saito
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Akito Uchida
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Naomichi Ogihara
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| |
Collapse
|
23
|
Granatosky MC, Schmitt D. Forelimb and hind limb loading patterns during below branch quadrupedal locomotion in the two‐toed sloth. J Zool (1987) 2017. [DOI: 10.1111/jzo.12455] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- M. C. Granatosky
- Department of Organismal Biology and Anatomy University of Chicago Chicago IL USA
| | - D. Schmitt
- Department of Evolutionary Anthropology Duke University Durham NC USA
| |
Collapse
|