1
|
Zhang DF, Penwell T, Chen YH, Koehler A, Wu R, Nik Akhtar S, Lu Q. G-Protein Signaling in Alzheimer's Disease: Spatial Expression Validation of Semi-supervised Deep Learning-Based Computational Framework. J Neurosci 2024; 44:e0587242024. [PMID: 39327003 PMCID: PMC11551890 DOI: 10.1523/jneurosci.0587-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Systemic study of pathogenic pathways and interrelationships underlying genes associated with Alzheimer's disease (AD) facilitates the identification of new targets for effective treatments. Recently available large-scale multiomics datasets provide opportunities to use computational approaches for such studies. Here, we devised a novel disease gene identification (digID) computational framework that consists of a semi-supervised deep learning classifier to predict AD-associated genes and a protein-protein interaction (PPI) network-based analysis to prioritize the importance of these predicted genes in AD. digID predicted 1,529 AD-associated genes and revealed potentially new AD molecular mechanisms and therapeutic targets including GNAI1 and GNB1, two G-protein subunits that regulate cell signaling, and KNG1, an upstream modulator of CDC42 small G-protein signaling and mediator of inflammation and candidate coregulator of amyloid precursor protein (APP). Analysis of mRNA expression validated their dysregulation in AD brains but further revealed the significant spatial patterns in different brain regions as well as among different subregions of the frontal cortex and hippocampi. Super-resolution STochastic Optical Reconstruction Microscopy (STORM) further demonstrated their subcellular colocalization and molecular interactions with APP in a transgenic mouse model of both sexes with AD-like mutations. These studies support the predictions made by digID while highlighting the importance of concurrent biological validation of computationally identified gene clusters as potential new AD therapeutic targets.
Collapse
Affiliation(s)
- Daniel F Zhang
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
- Department of Computer Science, George R. Brown School of Engineering, Rice University, Houston, Texas 77005
| | - Timothy Penwell
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
- Department of Chemistry and Biochemistry, The University of South Carolina, Columbia, South Carolina 29208
- Center for Neurotherapeutics, College of Arts and Sciences, The University of South Carolina, Columbia, South Carolina 29208
| | - Addison Koehler
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Rui Wu
- Department of Computer Science, College of Engineering and Technology, East Carolina University, Greenville, North Carolina 27858
| | - Shayan Nik Akhtar
- Department of Chemistry and Biochemistry, The University of South Carolina, Columbia, South Carolina 29208
- Center for Neurotherapeutics, College of Arts and Sciences, The University of South Carolina, Columbia, South Carolina 29208
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
- Department of Chemistry and Biochemistry, The University of South Carolina, Columbia, South Carolina 29208
- Center for Neurotherapeutics, College of Arts and Sciences, The University of South Carolina, Columbia, South Carolina 29208
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| |
Collapse
|
2
|
Reed ER, Chandler KB, Lopez P, Costello CE, Andersen SL, Perls TT, Li M, Bae H, Soerensen M, Monti S, Sebastiani P. Cross-platform proteomics signatures of extreme old age. GeroScience 2024:10.1007/s11357-024-01286-x. [PMID: 39048883 DOI: 10.1007/s11357-024-01286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
In previous work, we used a SomaLogic platform targeting approximately 5000 proteins to generate a serum protein signature of centenarians that we validated in independent studies that used the same technology. We set here to validate and possibly expand the results by profiling the serum proteome of a subset of individuals included in the original study using liquid chromatography tandem mass spectrometry (LC-MS/MS). Following pre-processing, the LC-MS/MS data provided quantification of 398 proteins, with only 266 proteins shared by both platforms. At 1% FDR statistical significance threshold, the analysis of LC-MS/MS data detected 44 proteins associated with extreme old age, including 23 of the original analysis. To identify proteins for which associations between expression and extreme-old age were conserved across platforms, we performed inter-study conservation testing of the 266 proteins quantified by both platforms using a method that accounts for the correlation between the results. From these tests, a total of 80 proteins reached 5% FDR statistical significance, and 26 of these proteins had concordant pattern of gene expression in whole blood generated in an independent set. This signature of 80 proteins points to blood coagulation, IGF signaling, extracellular matrix (ECM) organization, and complement cascade as important pathways whose protein level changes provide evidence for age-related adjustments that distinguish centenarians from younger individuals. The comparison with blood transcriptomics also highlights a possible role for neutrophil degranulation in aging.
Collapse
Affiliation(s)
- Eric R Reed
- Data Intensive Study Center, Tufts University, Boston, MA, USA
| | - Kevin B Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL, USA
| | - Prisma Lopez
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Stacy L Andersen
- Geriatric Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Thomas T Perls
- Geriatric Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Mengze Li
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Harold Bae
- Biostatistics Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Mette Soerensen
- Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Paola Sebastiani
- Data Intensive Study Center, Tufts University, Boston, MA, USA.
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA.
- Department of Medicine, School of Medicine, Tufts University, Boston, MA, USA.
| |
Collapse
|
3
|
Reed ER, Chandler KB, Lopez P, Costello CE, Andersen SL, Perls TT, Li M, Bae H, Soerensen M, Monti S, Sebastiani P. Cross-platform proteomics signatures of extreme old age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588876. [PMID: 38645061 PMCID: PMC11030369 DOI: 10.1101/2024.04.10.588876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
In previous work we used a Somalogic platform targeting approximately 5000 proteins to generate a serum protein signature of centenarians that we validated in independent studies that used the same technology. We set here to validate and possibly expand the results by profiling the serum proteome of a subset of individuals included in the original study using liquid chromatography tandem mass spectrometry (LC-MS/MS). Following pre-processing, the LC-MS/MS data provided quantification of 398 proteins, with only 266 proteins shared by both platforms. At 1% FDR statistical significance threshold, the analysis of LC-MS/MS data detected 44 proteins associated with extreme old age, including 23 of the original analysis. To identify proteins for which associations between expression and extreme-old age were conserved across platforms, we performed inter-study conservation testing of the 266 proteins quantified by both platforms using a method that accounts for the correlation between the results. From these tests, a total of 80 proteins reached 5% FDR statistical significance, and 26 of these proteins had concordant pattern of gene expression in whole blood. This signature of 80 proteins points to blood coagulation, IGF signaling, extracellular matrix (ECM) organization, and complement cascade as important pathways whose protein level changes provide evidence for age-related adjustments that distinguish centenarians from younger individuals.
Collapse
Affiliation(s)
- Eric R Reed
- Data Intensive Study Center, Tufts University, Boston, MA, USA
| | - Kevin B Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL, USA
| | - Prisma Lopez
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Stacy L Andersen
- Geriatric Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Thomas T Perls
- Geriatric Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Mengze Li
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Harold Bae
- Biostatistics Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Mette Soerensen
- Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Paola Sebastiani
- Data Intensive Study Center, Tufts University, Boston, MA, USA
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
- Department of Medicine, School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
4
|
Li Y, Xu M, Xiang BL, Li X, Zhang DF, Zhao H, Bi R, Yao YG. Functional genomics identify causal variant underlying the protective CTSH locus for Alzheimer's disease. Neuropsychopharmacology 2023; 48:1555-1566. [PMID: 36739351 PMCID: PMC10516988 DOI: 10.1038/s41386-023-01542-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/30/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, which has a high heritability of up to 79%. Exploring the genetic basis is essential for understanding the pathogenic mechanisms underlying AD development. Recent genome-wide association studies (GWASs) reported an AD-associated signal in the Cathepsin H (CTSH) gene in European populations. However, the exact functional/causal variant(s), and the genetic regulating mechanism of CTSH in AD remain to be determined. In this study, we carried out a comprehensive study to characterize the role of CTSH variants in the pathogenesis of AD. We identified rs2289702 in CTSH as the most significant functional variant that is associated with a protective effect against AD. The genetic association between rs2289702 and AD was validated in independent cohorts of the Han Chinese population. The CTSH mRNA expression level was significantly increased in AD patients and AD animal models, and the protective allele T of rs2289702 was associated with a decreased expression level of CTSH through the disruption of the binding affinity of transcription factors. Human microglia cells with CTSH knockout showed a significantly increased phagocytosis of Aβ peptides. Our study identified CTSH as being involved in AD genetic susceptibility and uncovered the genetic regulating mechanism of CTSH in pathogenesis of AD.
Collapse
Affiliation(s)
- Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Bo-Lin Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Hui Zhao
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, 650204, Kunming, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, 650204, Kunming, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
5
|
Xie Y, Zhou Y, Wang J, Du L, Ren Y, Liu F. Ferroptosis, autophagy, tumor and immunity. Heliyon 2023; 9:e19799. [PMID: 37810047 PMCID: PMC10559173 DOI: 10.1016/j.heliyon.2023.e19799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/20/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Ferroptosis was first proposed in 2012, a new form of cell death. Autophagy plays a crucial role in cell clearance and maintaining homeostasis. Autophagy is involved in the initial step of ferroptosis under the action of histone elements such as NCOA4, RAB7A, and BECN1. Ferroptosis and autophagy are involved in tumor progression, treatment, and drug resistance in the tumor microenvironment. In this review, we described the mechanisms of ferroptosis, autophagy, and tumor and immunotherapy, respectively, and emphasized the relationship between autophagy-related ferroptosis and tumor.
Collapse
Affiliation(s)
| | | | - Jiale Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lijuan Du
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yuanyuan Ren
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
6
|
Badimon A, Torrente D, Norris EH. Vascular Dysfunction in Alzheimer's Disease: Alterations in the Plasma Contact and Fibrinolytic Systems. Int J Mol Sci 2023; 24:7046. [PMID: 37108211 PMCID: PMC10138543 DOI: 10.3390/ijms24087046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting millions of people worldwide. The classical hallmarks of AD include extracellular beta-amyloid (Aβ) plaques and neurofibrillary tau tangles, although they are often accompanied by various vascular defects. These changes include damage to the vasculature, a decrease in cerebral blood flow, and accumulation of Aβ along vessels, among others. Vascular dysfunction begins early in disease pathogenesis and may contribute to disease progression and cognitive dysfunction. In addition, patients with AD exhibit alterations in the plasma contact system and the fibrinolytic system, two pathways in the blood that regulate clotting and inflammation. Here, we explain the clinical manifestations of vascular deficits in AD. Further, we describe how changes in plasma contact activation and the fibrinolytic system may contribute to vascular dysfunction, inflammation, coagulation, and cognitive impairment in AD. Given this evidence, we propose novel therapies that may, alone or in combination, ameliorate AD progression in patients.
Collapse
Affiliation(s)
| | | | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
7
|
Wang G, Shen X, Song X, Wang N, Wo X, Gao Y. Protective mechanism of gold nanoparticles on human neural stem cells injured by β-amyloid protein through miR-21-5p/SOCS6 pathway. Neurotoxicology 2023; 95:12-22. [PMID: 36623431 DOI: 10.1016/j.neuro.2022.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with progressive memory loss in dementia. Gold nanoparticles (AuNPs) were reported beneficial for human neural stem cells (hNSCs) treated with Amyloid-beta (Aβ), but the neuroprotective mechanisms still are unknown. First, the hNSCs induced by Aβ to construct AD cell model in vitro and AuNPs was performed to assess the therapeutic effect of Aβ-targeted AD treatment. Then, we investigated the effects of AuNPs on hNSCs viability and proinflammatory factors (interleukin 6 and tumor necrosis factor-alpha) by Cell Counting Kit-8 (CCK-8) and enzyme-linked immunosorbent (ELISA). FACS was carried out to determinate Tuj-1 and glial fibrillary acidic protein (GFAP). Reactive oxygen species (ROS) generation and mitochondrial membrane potential was evaluated by ROS and JC-1 assay kit. In addition, miRNA array was used to systematically detect the differential miRNAs. Dual-luciferase reporter assay was applied to verify the targeting relationship between miR-21-5p and the suppressor of cytokine signalling 6(SOCS6). Quantitative PCR (qPCR) and Western blot assessments were also used to detect related gene expression intracellularly or in the supernatant. The results demonstrate that AuNPs co-treatment repressed the high expression of total tau (T-tau), phosphorylated tau (P-tau), and Aβ protein, and reduced apoptosis rate of hNSCs. Aβ-induced decreased mitochondrial membrane potential and mitochondria in the hNSCs were damaged, while AuNPs co-treatment showed a protective effect on mitochondrial membrane potential. Co-treatment with AuNPs significantly increased dynamin-related protein 1 (DRP1), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM) mRNA levels. AuNPs may improve mitochondrial function impairment due to Aβ by elevating mitochondrial membrane potential, upregulating regulators of mitochondrial biogenesis, and inhibiting ROS production. hNSCs transfected with miR-21-5p inhibitor reversed AuNPs mediated cytoprotection induced by Aβ. AuNPs upregulation of miR-21-5p expression and exert a mitochondrial protective function. Overexpression of miR-21-5p contributes to enhancing the effect of cytoprotection of AuNPs. MiR-21-5p direct targeting SOCS6 and overexpression SOCS6 exerted opposite effects on hNSCs compared with miR-21-5p mimic group. In conclusion, AuNPs can protect hNSCs from Aβ injury and decrease mitochondrial damage by regulating the miR-21-5p/SOCS6 pathway.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Internal Neurology, Bin Zhou People's Hospital, No.515, Huanghe Seven Road, Binzhou, Shandong Province 256610, PR China.
| | - Xiangpeng Shen
- Department of Internal Neurology, Bin Zhou People's Hospital, No.515, Huanghe Seven Road, Binzhou, Shandong Province 256610, PR China
| | - Xiangkong Song
- Department of Internal Neurology, Bin Zhou People's Hospital, No.515, Huanghe Seven Road, Binzhou, Shandong Province 256610, PR China
| | - Ningfen Wang
- Department of Internal Neurology, Bin Zhou People's Hospital, No.515, Huanghe Seven Road, Binzhou, Shandong Province 256610, PR China
| | - Xuewen Wo
- Department of Internal Neurology, Bin Zhou People's Hospital, No.515, Huanghe Seven Road, Binzhou, Shandong Province 256610, PR China
| | - Yonglei Gao
- Department of Internal Neurology, Bin Zhou People's Hospital, No.515, Huanghe Seven Road, Binzhou, Shandong Province 256610, PR China
| |
Collapse
|
8
|
Wang J, Zhu W, Tu J, Zheng Y. Identification and Validation of Novel Biomarkers and Potential Targeted Drugs in Cholangiocarcinoma: Bioinformatics, Virtual Screening, and Biological Evaluation. J Microbiol Biotechnol 2022; 32:1262-1274. [PMID: 36224755 PMCID: PMC9668091 DOI: 10.4014/jmb.2207.07037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma (CCA) is a complex and refractor type of cancer with global prevalence. Several barriers remain in CCA diagnosis, treatment, and prognosis. Therefore, exploring more biomarkers and therapeutic drugs for CCA management is necessary. CCA gene expression data was downloaded from the TCGA and GEO databases. KEGG enrichment, GO analysis, and protein-protein interaction network were used for hub gene identification. miRNA were predicted using Targetscan and validated according to several GEO databases. The relative RNA and miRNA expression levels and prognostic information were obtained from the GEPIA. The candidate drug was screened using pharmacophore-based virtual screening and validated by molecular modeling and through several in vitro studies. 301 differentially expressed genes (DEGs) were screened out. Complement and coagulation cascades-related genes (including AHSG, F2, TTR, and KNG1), and cell cycle-related genes (including CDK1, CCNB1, and KIAA0101) were considered as the hub genes in CCA progression. AHSG, F2, TTR, and KNG1 were found to be significantly decreased and the eight predicted miRNA targeting AHSG, F2, and TTR were increased in CCA patients. CDK1, CCNB1, and KIAA0101 were found to be significantly abundant in CCA patients. In addition, Molport-003-703-800, which is a compound that is derived from pharmacophores-based virtual screening, could directly bind to CDK1 and exhibited anti-tumor activity in cholangiocarcinoma cells. AHSG, F2, TTR, and KNG1 could be novel biomarkers for CCA. Molport-003-703-800 targets CDK1 and work as potential cell cycle inhibitors, thereby having potential for consideration for new chemotherapeutics for CCA.
Collapse
Affiliation(s)
- Jiena Wang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Weiwei Zhu
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China,College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Junxue Tu
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yihui Zheng
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China,Corresponding author Phone/Fax: +86-13706677359 E-mail:
| |
Collapse
|