1
|
Du L, Langhough RE, Wilson RE, Reyes RER, Hermann BP, Jonaitis EM, Betthauser TJ, Chin NA, Christian B, Chaby L, Jeromin A, Molfetta GD, Brum WS, Arslan B, Ashton N, Blennow K, Zetterberg H, Johnson SC. Longitudinal plasma phosphorylated-tau217 and other related biomarkers in a non-demented Alzheimer's risk-enhanced sample. Alzheimers Dement 2024; 20:6183-6204. [PMID: 38970274 PMCID: PMC11497664 DOI: 10.1002/alz.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION Understanding longitudinal change in key plasma biomarkers will aid in detecting presymptomatic Alzheimer's disease (AD). METHODS Serial plasma samples from 424 Wisconsin Registry for Alzheimer's Prevention participants were analyzed for phosphorylated-tau217 (p-tau217; ALZpath) and other AD biomarkers, to study longitudinal trajectories in relation to disease, health factors, and cognitive decline. Of the participants, 18.6% with known amyloid status were amyloid positive (A+); 97.2% were cognitively unimpaired (CU). RESULTS In the CU, amyloid-negative (A-) subset, plasma p-tau217 levels increased modestly with age but were unaffected by body mass index and kidney function. In the whole sample, average p-tau217 change rates were higher in those who were A+ (e.g., simple slopes(se) for A+ and A- at age 60 were 0.232(0.028) and 0.038(0.013))). High baseline p-tau217 levels predicted faster preclinical cognitive decline. DISCUSSION p-tau217 stands out among markers for its strong association with disease and cognitive decline, indicating its potential for early AD detection and monitoring progression. HIGHLIGHTS Phosphorylated-tau217 (p-tau217) trajectories were significantly different in people who were known to be amyloid positive. Subtle age-related trajectories were seen for all the plasma markers in amyloid-negative cognitively unimpaired. Kidney function and body mass index were not associated with plasma p-tau217 trajectories. Higher plasma p-tau217 was associated with faster preclinical cognitive decline.
Collapse
Affiliation(s)
- Lianlian Du
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Rebecca E. Langhough
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Rachael E. Wilson
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Ramiro Eduardo Rea Reyes
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Bruce P. Hermann
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWisconsinUSA
| | - Erin M. Jonaitis
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Tobey J. Betthauser
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Nathaniel A. Chin
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Bradley Christian
- Waisman Laboratory for Brain Imaging and BehaviorUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | | | - Guglielmo Di Molfetta
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Wagner S. Brum
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Graduate Program in Biological Sciences: BiochemistryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreRSBrazil
| | - Burak Arslan
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Nicholas Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- ICM Paris Brain Institute, ICMPitie‐Salpetriere HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiAnhuiChina
| | - Henrik Zetterberg
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayHong KongChina
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
2
|
Xu Y, Sun Z, Jonaitis E, Deming Y, Lu Q, Johnson SC, Engelman CD. Mid-to-Late Life Healthy Lifestyle Modifies Genetic Risk for Longitudinal Cognitive Aging among Asymptomatic Individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.26.24307953. [PMID: 38853902 PMCID: PMC11160812 DOI: 10.1101/2024.05.26.24307953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
IMPORTANCE Genetic and lifestyle factors contribute to an individual's risk of developing Alzheimer's disease. However, it is unknown whether and how adherence to healthy lifestyles can mitigate the genetic risk of Alzheimer's. OBJECTIVE The aim of this study is to investigate whether adherence to healthy lifestyles can modify the impact of genetic predisposition to Alzheimer's disease on later-life cognitive decline. DESIGN SETTING AND PARTICIPANTS This prospective cohort study included 891 adults of European ancestry, aged 40 to 65, who were without dementia and had complete healthy-lifestyle and cognition data during the follow-up. Participants joined the Wisconsin Registry for Alzheimer's Prevention (WRAP) beginning in 2001. We conducted replication analyses using a subsample with similar baseline age range from the Health and Retirement Study (HRS). EXPOSURES We assessed participants' exposures using a continuous non-APOE polygenic risk score for Alzheimer's, a binary indicator for APOE-ε4 carrier status, and a weighted healthy-lifestyle score, including factors such as no current smoking, regular physical activity, healthy diet, light to moderate alcohol consumption, and frequent cognitive activities. MAIN OUTCOMES AND MEASURES We z-standardized cognitive scores for global (Preclinical Alzheimer's Cognitive Composite score 3 - PACC3) and domain-specific assessments (delayed recall and immediate learning). RESULTS We followed 891 individuals for up to 10 years (mean [SD] baseline age, 58 [6] years, 31% male, 38% APOE-ε4 carriers). After false discovery rate (FDR) correction, we found statistically significant PRS × lifestyle × age interactions on preclinical cognitive decline but the evidence is stronger among APOE-ε4 carriers. Among APOE-ε4 carriers, PRS-related differences in overall and memory-related domains between people scoring 0-1 and 4-5 regarding healthy lifestyles became evident around age 67 after FDR correction. These findings were robust across several sensitivity analyses and were replicated in the population-based HRS. CONCLUSION A favorable lifestyle can mitigate the genetic risk associated with current known non-APOE genetic variants for longitudinal cognitive decline, and these protective effects are particularly pronounced among APOE-ε4 carriers.
Collapse
Affiliation(s)
- Yuexuan Xu
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University
| | - Zhongxuan Sun
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Erin Jonaitis
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison
| | - Yuetiva Deming
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison
| | - Sterling C. Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison
| | - Corinne D. Engelman
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University
| |
Collapse
|
3
|
Rubinski A, Dewenter A, Zheng L, Franzmeier N, Stephenson H, Deming Y, Duering M, Gesierich B, Denecke J, Pham AV, Bendlin B, Ewers M. Florbetapir PET-assessed demyelination is associated with faster tau accumulation in an APOE ε4-dependent manner. Eur J Nucl Med Mol Imaging 2024; 51:1035-1049. [PMID: 38049659 PMCID: PMC10881623 DOI: 10.1007/s00259-023-06530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE The main objectives were to test whether (1) a decrease in myelin is associated with enhanced rate of fibrillar tau accumulation and cognitive decline in Alzheimer's disease, and (2) whether apolipoprotein E (APOE) ε4 genotype is associated with worse myelin decrease and thus tau accumulation. METHODS To address our objectives, we repurposed florbetapir-PET as a marker of myelin in the white matter (WM) based on previous validation studies showing that beta-amyloid (Aβ) PET tracers bind to WM myelin. We assessed 43 Aβ-biomarker negative (Aβ-) cognitively normal participants and 108 Aβ+ participants within the AD spectrum with florbetapir-PET at baseline and longitudinal flortaucipir-PET as a measure of fibrillar tau (tau-PET) over ~ 2 years. In linear regression analyses, we tested florbetapir-PET in the whole WM and major fiber tracts as predictors of tau-PET accumulation in a priori defined regions of interest (ROIs) and fiber-tract projection areas. In mediation analyses we tested whether tau-PET accumulation mediates the effect of florbetapir-PET in the whole WM on cognition. Finally, we assessed the role of myelin alteration on the association between APOE and tau-PET accumulation. RESULTS Lower florbetapir-PET in the whole WM or at a given fiber tract was predictive of faster tau-PET accumulation in Braak stages or the connected grey matter areas in Aβ+ participants. Faster tau-PET accumulation in higher cortical brain areas mediated the association between a decrease in florbetapir-PET in the WM and a faster rate of decline in global cognition and episodic memory. APOE ε4 genotype was associated with a worse decrease in the whole WM florbetapir-PET and thus enhanced tau-PET accumulation. CONCLUSION Myelin alterations are associated in an APOE ε4 dependent manner with faster tau progression and cognitive decline, and may therefore play a role in the etiology of AD.
Collapse
Affiliation(s)
- Anna Rubinski
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Lukai Zheng
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Henry Stephenson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, USA
| | - Yuetiva Deming
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, USA
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Benno Gesierich
- Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jannis Denecke
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - An-Vi Pham
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Barbara Bendlin
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, WI, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
4
|
Xu Y, Vasiljevic E, Deming YK, Jonaitis EM, Koscik RL, Van Hulle CA, Lu Q, Carboni M, Kollmorgen G, Wild N, Carlsson CM, Johnson SC, Zetterberg H, Blennow K, Engelman CD. Effect of Pathway-Specific Polygenic Risk Scores for Alzheimer's Disease (AD) on Rate of Change in Cognitive Function and AD-Related Biomarkers Among Asymptomatic Individuals. J Alzheimers Dis 2023; 94:1587-1605. [PMID: 37482996 PMCID: PMC10468904 DOI: 10.3233/jad-230097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND Genetic scores for late-onset Alzheimer's disease (LOAD) have been associated with preclinical cognitive decline and biomarker variations. Compared with an overall polygenic risk score (PRS), a pathway-specific PRS (p-PRS) may be more appropriate in predicting a specific biomarker or cognitive component underlying LOAD pathology earlier in the lifespan. OBJECTIVE In this study, we leveraged longitudinal data from the Wisconsin Registry for Alzheimer's Prevention and explored changing patterns in cognition and biomarkers at various age points along six biological pathways. METHODS PRS and p-PRSs with and without APOE were constructed separately based on the significant SNPs associated with LOAD in a recent genome-wide association study meta-analysis and compared to APOE alone. We used a linear mixed-effects model to assess the association between PRS/p-PRSs and cognitive trajectories among 1,175 individuals. We also applied the model to the outcomes of cerebrospinal fluid biomarkers in a subset. Replication analyses were performed in an independent sample. RESULTS We found p-PRSs and the overall PRS can predict preclinical changes in cognition and biomarkers. The effects of PRS/p-PRSs on rate of change in cognition, amyloid-β, and tau outcomes are dependent on age and appear earlier in the lifespan when APOE is included in these risk scores compared to when APOE is excluded. CONCLUSION In addition to APOE, the p-PRSs can predict age-dependent changes in amyloid-β, tau, and cognition. Once validated, they could be used to identify individuals with an elevated genetic risk of accumulating amyloid-β and tau, long before the onset of clinical symptoms.
Collapse
Affiliation(s)
- Yuexuan Xu
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | - Eva Vasiljevic
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Center for Demography of Health and Aging, University of Wisconsin-Madison, WI, USA
| | - Yuetiva K. Deming
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison, WI, USA
| | - Erin M. Jonaitis
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison, WI, USA
| | - Rebecca L. Koscik
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, WI, USA
| | - Carol A. Van Hulle
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, WI, USA
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| | | | | | | | - Cynthia M. Carlsson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, WI, USA
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI, USA
| | - Sterling C. Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Corinne D. Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, WI, USA
| |
Collapse
|