1
|
Lee SE, Lee HB, Yoon JW, Park HJ, Kim SH, Han DH, Lim ES, Kim EY, Park SP. Rapamycin treatment during prolonged in vitro maturation enhances the developmental competence of immature porcine oocytes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:905-919. [PMID: 39398303 PMCID: PMC11466741 DOI: 10.5187/jast.2023.e101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2024]
Abstract
Porcine oocytes undergo in vitro maturation (IVM) for 42-44 h. During this period, most oocytes proceed to metaphase and then to pro-metaphase if the nucleus has sufficiently matured. Forty-four hours is sufficient for oocyte nuclear maturation but not for full maturation of the oocyte cytoplasm. This study investigated the influences of extension of the IVM duration with rapamycin treatment on molecular maturation factors. The phospho-p44/42 mitogen-activated protein kinase (MAPK) level was enhanced in comparison with the total p44/42 MAPK level after 52 h of IVM. Oocytes were treated with and without 10 μM rapamycin (10 R and 0 R, respectively) and examined after 52 h of IVM, whereas control oocytes were examined after 44 h of IVM. Phospho-p44/42 MAPK activity was upregulated the 10 R and 0 R oocytes than in control oocytes. The expression levels of maternal genes were highest in 10 R oocytes and were higher in 0 R oocytes than in control oocytes. Reactive oxygen species (ROS) activity was dramatically increased in 0 R oocytes but was similar in 10 R and control oocytes. The 10 R group exhibited an increased embryo development rate, a higher total cell number per blastocyst, and decreased DNA fragmentation. The mRNA level of development-related (POU5F1 and NANOG) mRNA, oocyte-apoptotic (BCL2L1) genes were highest in 10 R blastocysts. These results suggest that prolonged IVM duration with rapamycin treatment represses ROS production and increases expression of molecular maturation factors. Therefore, this is a good strategy to enhance the developmental capacity in porcine oocytes.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
- Subtropical Livestock Research Institute,
National Institute of Animal Science, RDA, Jeju 63242,
Korea
| | - Han-Bi Lee
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Jae-Wook Yoon
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - Hyo-Jin Park
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - So-Hee Kim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - Dong-Hun Han
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Eun-Seo Lim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
- Mirae Cell Bio, Seoul 04795,
Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Mirae Cell Bio, Seoul 04795,
Korea
- Department of Bio Medical Informatic,
College of Applied Life Sciences, Jeju National University,
Jeju 63242, Korea
| |
Collapse
|
2
|
Li Z, Shu X, Liu X, Li Q, Hu Y, Jia B, Song M. Cellular and Molecular Mechanisms of Chemoresistance for Gastric Cancer. Int J Gen Med 2024; 17:3779-3788. [PMID: 39224691 PMCID: PMC11368108 DOI: 10.2147/ijgm.s473749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the digestive tract, and chemotherapy plays an irreplaceable role in the comprehensive treatment of GC. However, chemoresistance makes it difficult for patients with GC to benefit steadily from chemotherapy in the long term, which ultimately leads to tumor recurrence, metastasis, and patient death. Elucidating the detailed mechanism of chemoresistance in GC and identifying specific therapeutic targets will help to solve the difficult problem of chemoresistance and improve the prognosis of patients with GC. This review summarizes and clarifies the cellular and molecular mechanisms underlying chemoresistance for GC.
Collapse
Affiliation(s)
- Zonglin Li
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Xingming Shu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Xin Liu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qiuyun Li
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yifu Hu
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bingbing Jia
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Min Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
3
|
Lakhani NJ, Rasco D, Wang H, Men L, Liang E, Fu T, Collins MC, Min P, Yin Y, Davids MS, Yang D, Zhai Y. First-in-Human Study with Preclinical Data of BCL-2/BCL-xL Inhibitor Pelcitoclax in Locally Advanced or Metastatic Solid Tumors. Clin Cancer Res 2024; 30:506-521. [PMID: 37971712 DOI: 10.1158/1078-0432.ccr-23-1525] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE B-cell lymphoma-extra-large (BCL-xL) regulates apoptosis and is an attractive anticancer therapeutic target. However, BCL-xL inhibition also kills mature platelets, hampering clinical development. Using an innovative prodrug strategy, we have developed pelcitoclax (APG-1252), a potent, dual BCL-2 and BCL-xL inhibitor. Aims of this study were to characterize the antitumor activity and safety of pelcitoclax and explore its underlying mechanisms of action (MOA). PATIENTS AND METHODS Cell line-derived xenograft and patient-derived xenograft (PDX) models were tested to evaluate antitumor activity and elucidate MOA. Subjects (N = 50) with metastatic small-cell lung cancer and other solid tumors received intravenous pelcitoclax once or twice weekly. Primary outcome measures were safety and tolerability; preliminary efficacy (responses every 2 cycles per RECIST version 1.1) represented a secondary endpoint. RESULTS Pelcitoclax exhibited strong BAX/BAK‒dependent and caspase-mediated antiproliferative and apoptogenic activity in various cancer cell lines. Consistent with cell-based apoptogenic activity, pelcitoclax disrupted BCL-xL:BIM and BCL-xL:PUMA complexes in lung and gastric cancer PDX models. Levels of BCL-xL complexes correlated with tumor growth inhibition by pelcitoclax. Combined with taxanes, pelcitoclax enhanced antitumor activity by downregulating antiapoptotic protein myeloid cell leukemia-1 (MCL-1). Importantly, pelcitoclax was well tolerated and demonstrated preliminary therapeutic efficacy, with overall response and disease control rates of 6.5% and 30.4%, respectively. Most common treatment-related adverse events included transaminase elevations and reduced platelets that were less frequent with a once-weekly schedule. CONCLUSIONS Our data demonstrate that pelcitoclax has antitumor activity and is well tolerated, supporting its further clinical development for human solid tumors, particularly combined with agents that downregulate MCL-1.
Collapse
Affiliation(s)
| | | | - Hengbang Wang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Lichuang Men
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Eric Liang
- Ascentage Pharma Group Inc., Rockville, Maryland
| | - Tommy Fu
- Ascentage Pharma Group Inc., Rockville, Maryland
| | - Mary C Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ping Min
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Yan Yin
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dajun Yang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
- Ascentage Pharma Group Inc., Rockville, Maryland
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
- Ascentage Pharma Group Inc., Rockville, Maryland
| |
Collapse
|
4
|
Kitaeva KV, Solovyeva VV, Blatt NL, Rizvanov AA. Eternal Youth: A Comprehensive Exploration of Gene, Cellular, and Pharmacological Anti-Aging Strategies. Int J Mol Sci 2024; 25:643. [PMID: 38203812 PMCID: PMC10778954 DOI: 10.3390/ijms25010643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The improvement of human living conditions has led to an increase in average life expectancy, creating a new social and medical problem-aging, which diminishes the overall quality of human life. The aging process of the body begins with the activation of effector signaling pathways of aging in cells, resulting in the loss of their normal functions and deleterious effects on the microenvironment. This, in turn, leads to chronic inflammation and similar transformations in neighboring cells. The cumulative retention of these senescent cells over a prolonged period results in the deterioration of tissues and organs, ultimately leading to a reduced quality of life and an elevated risk of mortality. Among the most promising methods for addressing aging and age-related illnesses are pharmacological, genetic, and cellular therapies. Elevating the activity of aging-suppressing genes, employing specific groups of native and genetically modified cells, and utilizing senolytic medications may offer the potential to delay aging and age-related ailments over the long term. This review explores strategies and advancements in the field of anti-aging therapies currently under investigation, with a particular emphasis on gene therapy involving adeno-associated vectors and cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Nataliya L. Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
5
|
Shen J, Yang H, Qiao X, Chen Y, Zheng L, Lin J, Lang J, Yu Q, Wang Z. The E3 ubiquitin ligase TRIM17 promotes gastric cancer survival and progression via controlling BAX stability and antagonizing apoptosis. Cell Death Differ 2023; 30:2322-2335. [PMID: 37697039 PMCID: PMC10589321 DOI: 10.1038/s41418-023-01221-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Tripartite motif 17 (TRIM17) belongs to a subfamily of the RING-type E3 ubiquitin ligases, and regulates several cellular processes and pathological conditions including cancer. However, its potential function in gastric cancer (GC) remains obscure. Here, we have found TRIM17 mRNA and protein levels are both upregulated in human GC compared with normal specimens, and TRIM17 upregulation indicates poor survival for GC patients. Functionally, TRIM17 was found to act as an oncogene by promoting the proliferation and survival of GC cell lines AGS and HGC-27. Mechanistically, TRIM17 acts to interact with BAX and promote its ubiquitination and proteasomal degradation, leading to a deficiency in BAX-dependent apoptosis in GC cells in the absence and presence of apoptosis stimuli. Moreover, TRIM17 and BAX expression levels are inversely correlated in human GC specimens. Our data thus suggest TRIM17 contributes to gastric cancer survival through regulating BAX protein stability and antagonizing apoptosis, which provides a promising therapeutic target for GC treatment and a biomarker for prognosis.
Collapse
Affiliation(s)
- Jiajia Shen
- Department of Biochemistry, Institute of Medicinal Biotecnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hang Yang
- Department of Biochemistry, Institute of Medicinal Biotecnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xinran Qiao
- Department of Biochemistry, Institute of Medicinal Biotecnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Chen
- Department of Biochemistry, Institute of Medicinal Biotecnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Liyun Zheng
- Department of Biochemistry, Institute of Medicinal Biotecnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyu Lin
- Department of Biochemistry, Institute of Medicinal Biotecnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyu Lang
- CAS_Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Yu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Zhen Wang
- Department of Biochemistry, Institute of Medicinal Biotecnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Caserta S, Genovese C, Cicero N, Toscano V, Gangemi S, Allegra A. The Interplay between Medical Plants and Gut Microbiota in Cancer. Nutrients 2023; 15:3327. [PMID: 37571264 PMCID: PMC10421419 DOI: 10.3390/nu15153327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The gut microbiota is a dynamic community of bacteria distributed in the gastroenteric tract and changes in response to diseases, diet, use of antibiotics and probiotics, hygiene status, and other environmental factors. Dysbiosis, a disruption of the normal crosstalk between the host and the microbes, is associated with obesity, diabetes, cancer, and cardiovascular diseases, is linked to a reduction of anti-inflammatory bacteria like Lactobacillus and Roseburia, and to an increase in the growth of proinflammatory species like Ruminococcus gnavus and Bacteroidetes. Some plants possess anticancer properties and various studies have reported that some of these are also able to modulate the gut microbiota. The aim of this work is to evaluate the crucial relationship between medical plants and gut microbiota and the consequences on the onset and progression of cancer. In vivo studies about hematological malignancies showed that beta-glucans tie to endogenous antibeta glucan antibodies and to iC3b, an opsonic fragment of the central complement protein C3, leading to phagocytosis of antibody-targeted neoplastic cells and potentiation of the cytotoxic activity of the innate immune system if administered together with monoclonal antibodies. In conclusion, this review suggests the potential use of medical plants to improve gut dysbiosis and assist in the treatment of cancer.
Collapse
Affiliation(s)
- Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Claudia Genovese
- National Research Council, Institute for Agriculture and Forestry Systems in the Mediterranean, Via Empedocle 58, 95128 Catania, Italy;
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Valeria Toscano
- National Research Council, Institute for Agriculture and Forestry Systems in the Mediterranean, Via Empedocle 58, 95128 Catania, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| |
Collapse
|
7
|
Wei Y, Zhang L, Wang C, Li Z, Luo M, Xie G, Yang X, Li M, Ren S, Zhao D, Gao R, Gong J. Anti-apoptotic protein BCL-XL as a therapeutic vulnerability in gastric cancer. Animal Model Exp Med 2023; 6:245-254. [PMID: 37271936 PMCID: PMC10272913 DOI: 10.1002/ame2.12330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND New therapeutic targets are needed to improve the outcomes for gastric cancer (GC) patients with advanced disease. Evasion of programmed cell death (apoptosis) is a hallmark of cancer cells and direct induction of apoptosis by targeting the pro-survival BCL2 family proteins represents a promising therapeutic strategy for cancer treatment. Therefore, understanding the molecular mechanisms underpinning cancer cell survival could provide a molecular basis for potential therapeutic interventions. METHOD Here we explored the role of BCL2L1 and the encoded anti-apoptotic BCL-XL in GC. Using Droplet Digital PCR (ddPCR) technology to investigate the DNA amplification of BCL2L1 in GC samples and GC cell lines, the sensitivity of GC cell lines to selective BCL-XL inhibitors A1155463 and A1331852, pan-inhibitor ABT-263, and VHL-based PROTAC-BCL-XL was analyzed using (CellTiter-Glo) CTG assay in vitro. Western Blot (WB) was used to detect the protein expression of BCL2 family members in GC cell lines and the manner in which PROTAC-BCL-XL kills GC cells. Co-immunoprecipitation (Co-IP) was used to investigate the mechanism of A1331852 and ABT-263 kills GC cell lines. DDPCR, WB, and real-time PCR (RTPCR) were used to investigate the correlation between DNA, RNA, protein levels, and drug activity. RESULTS The functional assay showed that a subset of GC cell lines relies on BCL-XL for survival. In gastric cancer cell lines, BCL-XL inhibitors A1155463 and A1331852 are more sensitive than the pan BCL2 family inhibitor ABT-263, indicating that ABT-263 is not an optimal inhibitor of BCL-XL. VHL-based PROTAC-BCL-XL DT2216 appears to be active in GC cells. DT2216 induces apoptosis of gastric cancer cells in a time- and dose-dependent manner through the proteasome pathway. Statistical analysis showed that the BCL-XL protein level predicts the response of GC cells to BCL-XL targeting therapy and BCL2L1 gene CNVs do not reliably predict BCL-XL expression. CONCLUSION We identified BCL-XL as a promising therapeutic target in a subset of GC cases with high levels of BCL-XL protein expression. Functionally, we demonstrated that both selective BCL-XL inhibitors and VHL-based PROTAC BCL-XL can potently kill GC cells that are reliant on BCL-XL for survival. However, we found that BCL2L1 copy number variations (CNVs) cannot reliably predict BCL-XL expression, but the BCL-XL protein level serves as a useful biomarker for predicting the sensitivity of GC cells to BCL-XL-targeting compounds. Taken together, our study pinpointed BCL-XL as potential druggable target for specific subsets of GC.
Collapse
Affiliation(s)
- Yumin Wei
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Liping Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Chao Wang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Zefeng Li
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mingjie Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhouChina
| | - Guomin Xie
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Xingjiu Yang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Mengyuan Li
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Shuyue Ren
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Dongbing Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ran Gao
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Jia‐Nan Gong
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| |
Collapse
|