1
|
Shin J, Wu J, Park H, Kim SI, Shin N, Shin HJ, Ren G, Kim JA, Hwang PTJ, Jun HW, Lee SY, Lee S, Kim HG, Kim DW. Microglial pyroptosis drives neuropathic pain and targeting NLRP3 alleviates pain and neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167737. [PMID: 39971256 DOI: 10.1016/j.bbadis.2025.167737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Neuropathic pain is triggered by nerve damage or disease and involves chronic neuroinflammation driven by activated microglia releasing pro-inflammatory cytokines. PANoptosis, a complex cell death program encompassing apoptosis, pyroptosis, and necroptosis, has emerged as a key player in neuroinflammation. While individual PANoptosis pathway have been linked to pain, its systemic role in neuropathic pain remains unclear. This study explored the involvement of PANoptosis in microglia under neuropathic pain and its potential therapeutic targeting. After spinal nerve ligation (SNL), robust microglia activation and pro-inflammatory cytokines were increased in spinal dorsal horn. To figure out the major PANoptosis under neuropathic pain, bioinformatic analysis and protein analysis were explored by using spinal dorsal horn on 14 days of post injury. The results supported that pyroptosis was the dominant pathway after injury, and we further investigated pyroptosis-related markers on microglia specifically. Notably, pyroptosis marker (caspase-1) was elevated in microglia compared to apoptosis (cleaved caspase-3) and necroptosis (p-RIPK3) markers. This finding highlights microglia pyroptosis as a key driver of neuropathic pain development. To harness this knowledge therapeutically, we employed intrathecal injection of NLRP3 siRNA nanoparticles. NLRP3, a crucial component of the inflammasome complex triggering pyroptosis, served as our target. Strikingly, this intervention effectively alleviated mechanical allodynia, a hallmark of neuropathic pain, alongside reducing microgliosis and dampening microglial pyroptosis. Our findings reveal that microglia pyroptosis plays a key role in neuropathic pain and suggest NLRP3 siRNA nanoparticles as a promising therapeutic avenue for pain management.
Collapse
Affiliation(s)
- Juhee Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Junhua Wu
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hyewon Park
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Song I Kim
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Patrick T J Hwang
- Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, 806 Shelby, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Sun Yeul Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Hyeong-Geug Kim
- Nanoglia, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Dong Woon Kim
- Department of Oral Anatomy and Developmental Biology, Kyung Hee University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Samy EM, Radwan RR, Mosallam FM, Mohamed HA. Nano-pregabalin effectively mitigates Glut, CGRP and NE neurotransmitters abnormalities in the brain of gamma irradiated rats with reserpine-induced fibromyalgia model: Behavioral and neurochemical studies. Neuropharmacology 2024; 261:110162. [PMID: 39299572 DOI: 10.1016/j.neuropharm.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
AIMS Fibromyalgia (FM) is an idiopathic syndrome with painful burdensome symptoms. Radiotherapy is one of the main therapeutic modalities for treating various malignancies and there is a probable association between FM exacerbation and exposure to ionizing radiation. Based on that nanomedicines progressively being explored for their promising applications in medicine, the aim of the current study is to assess the possible therapeutic benefits of nanoform of pregabalin (N-PG) in managing FM symptoms during being exposed to ionizing radiation. MAIN METHODS Rats were allocated into four groups. First group served as control, the other three groups received gamma radiation (2 Gy/day) after 1 h of reserpine administration (1 ml/kg per day, s.c.) to induce FM for three successive days. On the next day, third and fourth groups received (30 mg/kg, p.o.) of PG and N-PG, respectively once daily for ten consecutive days. Tail flick test was performed and von Frey filaments were used to assess mechanical allodynia/hyperalgesia, and then rats were sacrificed to obtain brains. KEY FINDINGS N-PG effectively replenished reserpine effects and treated both allodynia and hyperalgesia, improved thermal allodynia, effectively recovered all neurotransmitters near to normal baseline, inhibited oxidative stress status via decreasing malondialdehyde (MDA), increasing glutathione (GSH) and superoxide dismutase (SOD), it had strong anti-inflammatory effect as verified by reducing both cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-kB) in addition to inhibition of intrinsic apoptosis through caspase-3 (casp-3) decrease and B-cell lymphoma-2 (Bcl-2) increase. Histopathological and immunohistochemical results confirmed the biochemical findings. SIGNIFICANCE N-PG could be a promising drug for treating FM especially when there is urgent need to expose patient to ionizing radiation.
Collapse
Affiliation(s)
- Esraa M Samy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Rasha R Radwan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Farag M Mosallam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Heba A Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
3
|
Lei J, Tang LL, You HJ. Pathological pain: Non-motor manifestations in Parkinson disease and its treatment. Neurosci Biobehav Rev 2024; 161:105646. [PMID: 38569983 DOI: 10.1016/j.neubiorev.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
In addition to motor symptoms, non-motor manifestations of Parkinson's disease (PD), i.e. pain, depression, sleep disturbance, and autonomic disorders, have received increasing attention. As one of the non-motor symptoms, pain has a high prevalence and is considered an early pre-motor symptom in the development of PD. In relation to pathological pain and its management in PD, particularly in the early stages, it is hypothesized that the loss of dopaminergic neurons causes a functional deficit in supraspinal structures, leading to an imbalance in endogenous descending modulation. Deficits in dopaminergic-dependent pathways also affect non-dopaminergic neurotransmitter systems that contribute to the pathological processing of nociceptive input, the integration, and modulation of pain in PD. This review examines the onset and progression of pain in PD, with a particular focus on alterations in the central modulation of nociception. The discussion highlights the importance of abnormal endogenous descending facilitation and inhibition in PD pain, which may provide potential clues to a better understanding of the nature of pathological pain and its effective clinical management.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China
| | - Lin-Lin Tang
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China.
| |
Collapse
|
4
|
Zhang LG, Cheng J, An MQ, Li CJ, Dong LG, Wang JM, Liu CF, Wang F, Mao CJ. Safinamide alleviates hyperalgesia via inhibiting hyperexcitability of DRG neurons in a mouse model of Parkinson's disease. Behav Brain Res 2024; 459:114787. [PMID: 38042302 DOI: 10.1016/j.bbr.2023.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Pain is a widespread non-motor symptom that presents significant treatment challenges in patients with Parkinson's disease (PD). Safinamide, a new drug recently introduced for PD treatment, has demonstrated analgesic effects on pain in PD patients, though the underlying mechanisms remain unclear. To investigate the analgesic and anti-PD effect of safinamide, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model was used, and rasagiline as positive control on motor symptoms. Notably, only safinamide alleviated hyperalgesia in MPTP mice. Whole-cell patch-clamp recordings of dorsal root ganglion (DRG) neurons revealed hyperexcitability in MPTP mice, which safinamide counteracted in a concentration-dependent manner. The voltage clamp further demonstrated that sodium current in DRG neurons of MPTP mice was enhanced and safinamide reduced sodium current density. RT-qPCR identified upregulated Nav1.7 and Nav1.8 transcripts (Scn9a and Scn10a) in DRG neurons of MPTP mice. Our results suggest that safinamide could relieve hyperalgesia by inhibiting DRG neuron hyperexcitability in MPTP mice.
Collapse
Affiliation(s)
- Li-Ge Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jing Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Meng-Qi An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Cheng-Jie Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Guo Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Min Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
6
|
Pautrat A, Al Tannir R, Pernet-Gallay K, Soutrenon R, Vendramini E, Sinniger V, Overton PG, David O, Coizet V. Altered parabrachial nucleus nociceptive processing may underlie central pain in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:78. [PMID: 37236965 DOI: 10.1038/s41531-023-00516-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The presence of central neuropathic pain in Parkinson's disease suggests that the brain circuits that allow us to process pain could be dysfunctional in the disorder. However, there is to date no clear pathophysiological mechanism to explain these symptoms. In this work, we present evidence that the dysfunction of the subthalamic nucleus and/or substantia nigra pars reticulata may impact nociceptive processing in the parabrachial nucleus (PBN), a low level primary nociceptive structure in the brainstem, and induce a cellular and molecular neuro-adaptation in this structure. In rat models of Parkinson's disease with a partial dopaminergic lesion in the substantia nigra compacta, we found that the substantia nigra reticulata showed enhanced nociceptive responses. Such responses were less impacted in the subthalamic nucleus. A total dopaminergic lesion produced an increase in the nociceptive responses as well as an increase of the firing rate in both structures. In the PBN, inhibited nociceptive responses and increased expression of GABAA receptors were found following a total dopaminergic lesion. However, neuro-adaptations at the level of dendritic spine density and post-synaptic density were found in both dopaminergic lesion groups. These results suggest that the molecular changes within the PBN following a larger dopaminergic lesion, such as increased GABAA expression, is a key mechanism to produce nociceptive processing impairment, whilst other changes may protect function after smaller dopaminergic lesions. We also propose that these neuro-adaptations follow increased inhibitory tone from the substantia nigra pars reticulata and may represent the mechanism generating central neuropathic pain in Parkinson's disease.
Collapse
Affiliation(s)
- Arnaud Pautrat
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Racha Al Tannir
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Karin Pernet-Gallay
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Rémi Soutrenon
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Estelle Vendramini
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Valérie Sinniger
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Paul G Overton
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Olivier David
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille, 13005, France
| | - Véronique Coizet
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
7
|
Seki M, Kurihara K, Konno T, Fujioka S, Tsuboi Y. [Characteristics and treatment of pain in Parkinson's disease]. Rinsho Shinkeigaku 2022; 62:763-772. [PMID: 36184418 DOI: 10.5692/clinicalneurol.cn-001733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pain is a representative non-motor symptom in patients with Parkinson's disease (PD). Pain is one of the most common symptoms that plague patients with PD regardless of the stage of the disease, also it can exacerbate other symptoms, such as depression, anxiety or sleep disturbance, and lead to impaired quality of life. However, pain is often not adequately evaluated and treated. PD patients complain of a wide variety of pain, including both PD-related pain which caused by PD-specific symptoms, for example, rigidity, bradykinesia or motor fluctuation, and PD-unrelated pain, and it can be divided into central and peripheral depending on the site of the disorder. In the medical care of the pain, it is important to evaluate the type and severity of the pain using PD-specific assessment scales such as King's PD pain scale and to consider the evidence-based treatment methods according to the pathophysiology of the pain.
Collapse
Affiliation(s)
- Morinobu Seki
- Department of Neurology, Keio University School of Medicine, Japan
| | - Kanako Kurihara
- Department of Neurology, Faculty of Medicine, Fukuoka University, Japan
| | - Takuya Konno
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Shinsuke Fujioka
- Department of Neurology, Faculty of Medicine, Fukuoka University, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Faculty of Medicine, Fukuoka University, Japan
| |
Collapse
|
8
|
Apoptosis and (in) Pain—Potential Clinical Implications. Biomedicines 2022; 10:biomedicines10061255. [PMID: 35740277 PMCID: PMC9219669 DOI: 10.3390/biomedicines10061255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
The deregulation of apoptosis is involved in the development of several pathologies, and recent evidence suggests that apoptosis may be involved in chronic pain, namely in neuropathic pain. Neuropathic pain is a chronic pain state caused by primary damage or dysfunction of the nervous system; however, the details of the molecular mechanisms have not yet been fully elucidated. Recently, it was found that nerve endings contain transient receptor potential (TRP) channels that sense and detect signals released by injured tissues and respond to these damage signals. TRP channels are similar to the voltage-gated potassium channels or nucleotide-gated channels that participate in calcium and magnesium homeostasis. TRP channels allowing calcium to penetrate into nerve terminals can activate apoptosis, leading to nerve terminal destruction. Further, some TRPs are activated by acid and reactive oxygen species (ROS). ROS are mainly produced in the mitochondrial respiratory chain, and an increase in ROS production and/or a decrease in the antioxidant network may induce oxidative stress (OS). Depending on the OS levels, they can promote cellular proliferation and/or cell degeneration or death. Previous studies have indicated that proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), play an important role in the peripheral mediation of neuropathic pain. This article aims to perform a review of the involvement of apoptosis in pain, particularly the role of OS and neuroinflammation, and the clinical relevance of this knowledge. The potential discovery of new biomarkers and therapeutic targets can result in the development of more effective and targeted drugs to treat chronic pain, namely neuropathic pain. Highlights: Oxidative stress and neuroinflammation can activate cell signaling pathways that can lead to nerve terminal destruction by apoptosis. These could constitute potential new pain biomarkers and targets for therapy in neuropathic pain.
Collapse
|
9
|
Emerging Role of C5 Complement Pathway in Peripheral Neuropathies: Current Treatments and Future Perspectives. Biomedicines 2021; 9:biomedicines9040399. [PMID: 33917266 PMCID: PMC8067968 DOI: 10.3390/biomedicines9040399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
The complement system is a key component of innate immunity since it plays a critical role in inflammation and defense against common pathogens. However, an inappropriate activation of the complement system is involved in numerous disorders, including peripheral neuropathies. Current strategies for neuropathy-related pain fail to achieve adequate pain relief, and although several therapies are used to alleviate symptoms, approved disease-modifying treatments are unavailable. This urgent medical need is driving the development of therapeutic agents for this condition, and special emphasis is given to complement-targeting approaches. Recent evidence has underscored the importance of complement component C5a and its receptor C5aR1 in inflammatory and neuropathic pain, indicating that C5a/C5aR1 axis activation triggers a cascade of events involved in pathophysiology of peripheral neuropathy and painful neuro-inflammatory states. However, the underlying pathophysiological mechanisms of this signaling in peripheral neuropathy are not fully known. Here, we provide an overview of complement pathways and major components associated with dysregulated complement activation in peripheral neuropathy, and of drugs under development targeting the C5 system. C5/C5aR1 axis modulators could represent a new strategy to treat complement-related peripheral neuropathies. Specifically, we describe novel C5aR allosteric modulators, which may potentially become new tools in the therapeutic armory against neuropathic pain.
Collapse
|
10
|
Integrins protect sensory neurons in models of paclitaxel-induced peripheral sensory neuropathy. Proc Natl Acad Sci U S A 2021; 118:2006050118. [PMID: 33876743 DOI: 10.1073/pnas.2006050118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN often affects unmyelinated nociceptive sensory terminals. Despite the high prevalence, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractable Drosophila model and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment of Drosophila larvae with paclitaxel caused degeneration and altered the branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We further found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-induced cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. Paclitaxel-induced changes in recycling endosomes precede morphological degeneration of nociceptive neuron arbors, which could be prevented by integrin overexpression. We used primary dorsal root ganglia (DRG) neuron cultures to test conservation of integrin-mediated protection. We show that transduction of a human integrin β-subunit 1 also prevented degeneration following paclitaxel treatment. Furthermore, endogenous levels of surface integrins were decreased in paclitaxel-treated mouse DRG neurons, suggesting that paclitaxel disrupts recycling in vertebrate sensory neurons. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring neuronal interactions with the extracellular environment to antagonize paclitaxel-induced toxicity in sensory neurons.
Collapse
|
11
|
Kim JY, Kim YS, Ko I, Kim DK. Association Between Burning Mouth Syndrome and the Development of Depression, Anxiety, Dementia, and Parkinson Disease. JAMA Otolaryngol Head Neck Surg 2021; 146:561-569. [PMID: 32352482 DOI: 10.1001/jamaoto.2020.0526] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Burning mouth syndrome is a chronic oral pain disorder that is characterized by a generalized or localized burning sensation without the presence of any specific mucosal lesions. It remains unclear, however, whether burning mouth syndrome is associated with the development of psychoneurological conditions among patients with the syndrome. Objective To evaluate the risk of developing psychoneurological conditions, including depression, anxiety, dementia, and Parkinson disease, in patients with burning mouth syndrome. Design, Setting, and Participants This retrospective population-based cohort study was conducted using a nationwide representative cohort sample from the Korean National Health Insurance Service-National Sample Cohort, which consists of data from approximately 1 million patients in South Korea. The study included 586 patients with burning mouth syndrome (patient group) and 1172 individuals without burning mouth syndrome (comparison group). The patient group included all patients who received inpatient and outpatient care for an initial diagnosis of burning mouth syndrome between January 1, 2002, and December 31, 2012. The comparison group was selected (2 individuals without burning mouth syndrome for each patient with burning mouth syndrome) using propensity score matching for sex, age, location of residence, household income level, and comorbidities. Data were collected and analyzed from January 1, 2002, to December 31, 2013. Main Outcomes and Measures Death and the incidence of psychopathological diseases. Affective disorder events that occurred among participants during the follow-up period were investigated using survival analysis, a log-rank test, and Cox proportional hazards regression models to estimate the incidence rates, survival rates, and hazard ratios, respectively, of participants who developed psychoneurological conditions. Results Of 1758 total participants, 1086 (61.8%) were female; 701 participants (39.9%) were younger than 45 years, 667 (37.9%) were aged 45 to 64 years, and 390 (22.2%) were older than 64 years. The overall incidence of depression and anxiety was higher in patients with burning mouth syndrome (n = 586; 30.8 incidents and 44.2 incidents per 1000 person-years, respectively) than in individuals without burning mouth syndrome (n = 1172; 11.7 incidents and 19.0 incidents per 1000 person-years, respectively). The results also indicated a similar incidence of dementia and Parkinson disease between the patient group (6.5 incidents and 2.5 incidents per 1000 person-years, respectively) and the comparison group (4.9 incidents and 1.7 incidents per 1000 person-years, respectively). After adjusting for sociodemographic factors (age, location of residence, household income level, and comorbidities), the adjusted hazard ratios for the development of depression and anxiety among patients with burning mouth syndrome were 2.77 (95% CI, 2.22-3.45) and 2.42 (95% CI, 2.02-2.90), respectively. However, no association was found between burning mouth syndrome and the risk of developing dementia and Parkinson disease. Conclusions and Relevance Results of this observational study suggest that burning mouth syndrome is associated with increases in the incidence of depression and anxiety but not in the incidence of dementia and Parkinson disease among patients with the syndrome. Clinicians should be aware of this association and be prepared to make referrals to appropriate mental health care professionals.
Collapse
Affiliation(s)
- Jong-Yeup Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Republic of Korea.,Department of Biomedical Informatics, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Yeon Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Inseok Ko
- Department of Biomedical Informatics, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea.,Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
12
|
Buhmann C, Kassubek J, Jost WH. Management of Pain in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 10:S37-S48. [PMID: 32568113 PMCID: PMC7592654 DOI: 10.3233/jpd-202069] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pain is a very frequent symptom with influence on the quality of life in Parkinson’s disease (PD), but is still underdiagnosed and commonly treated only unsystematically. Pain etiology and pain character are often complex and multi-causal, and data regarding treatment recommendations are limited. Pain can be primarily related to PD but frequently it is associated with secondary diseases, such as arthrosis of the spine or joints. However, even basically PD-unrelated pain often is amplified by motor- or non-motor PD symptoms, such as akinesia or depression. Beyond an optimization of anti-parkinsonian treatment, additional pain treatment strategies are usually needed to properly address pain in PD. A careful pain history and diagnostic work-up is essential to rate the underlying pain pathophysiology and to develop a targeted therapeutic concept. This review gives an overview on how pain is treated in PD patients and how patients assess the effectiveness of these therapies; here, the manuscript focuses on pathophysiology-driven suggestions for a multimodal pain management in clinical practice.
Collapse
Affiliation(s)
- Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
13
|
Duitama M, Vargas-López V, Casas Z, Albarracin SL, Sutachan JJ, Torres YP. TRP Channels Role in Pain Associated With Neurodegenerative Diseases. Front Neurosci 2020; 14:782. [PMID: 32848557 PMCID: PMC7417429 DOI: 10.3389/fnins.2020.00782] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential (TRP) are cation channels expressed in both non-excitable and excitable cells from diverse tissues, including heart, lung, and brain. The TRP channel family includes 28 isoforms activated by physical and chemical stimuli, such as temperature, pH, osmotic pressure, and noxious stimuli. Recently, it has been shown that TRP channels are also directly or indirectly activated by reactive oxygen species. Oxidative stress plays an essential role in neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, and TRP channels are involved in the progression of those diseases by mechanisms involving changes in the crosstalk between Ca2+ regulation, oxidative stress, and production of inflammatory mediators. TRP channels involved in nociception include members of the TRPV, TRPM, TRPA, and TRPC subfamilies that transduce physical and chemical noxious stimuli. It has also been reported that pain is a complex issue in patients with Alzheimer's and Parkinson's diseases, and adequate management of pain in those conditions is still in discussion. TRPV1 has a role in neuroinflammation, a critical mechanism involved in neurodegeneration. Therefore, some studies have considered TRPV1 as a target for both pain treatment and neurodegenerative disorders. Thus, this review aimed to describe the TRP-dependent mechanism that can mediate pain sensation in neurodegenerative diseases and the therapeutic approach available to palliate pain and neurodegenerative symptoms throughout the regulation of these channels.
Collapse
|
14
|
Li Y, Li H, Han J. Sphingosine-1-phosphate receptor 2 modulates pain sensitivity by suppressing the ROS-RUNX3 pathway in a rat model of neuropathy. J Cell Physiol 2019; 235:3864-3873. [PMID: 31603252 DOI: 10.1002/jcp.29280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Neuropathic pain correlates with a lesion or other dysfunction in the nervous system. Sphingosine-1-phosphate receptor 2 (S1P2) is expressed in the central nervous system and modulates synaptic plasticity. The present study aimed to investigate the role of S1P2 in neuropathic pain caused by chronic constriction injury (CCI). Sprague-Dawley rats were allocated into eight groups (n = 15 for each group): sham, CCI, CCI + green fluorescent protein, CCI + S1P2, CCI + Ctrl-short hairpin RNA (shRNA), CCI + S1P2 shRNA, CCI + S1P2 + CYM-5442, and CCI + S1P2 shRNA + CYM-5442. The CCI model was established via sciatic nerve ligation. S1P2 was overexpressed or knocked down by intrathecal injection of adeno-associated virus-S1P2 (AAV-S1P2) or AAV-S1P2 shRNA. The S1P1 agonist, CYM-5442 (1 mg/kg), was injected intraperitoneally after surgery. S1P2 expression, pain thresholds, apoptosis signaling, inflammation, and oxidative stress in rats were then examined. We found that sciatic nerve injury downregulated S1P2 expression in the spinal cords of rats. S1P2 overexpression enhanced pain thresholds. In contrast, S1P2 knockdown decreased pain thresholds in rats exposed to CCI. CCI and S1P2 silencing increased secretion of interleukin-1β (IL-1β), IL-6, and CCL2, whereas S1P2 overexpression decreased. S1P2 impeded CCI-induced reactive oxygen species (ROS) production and runt-related transcription factors 3 (RUNX3) downregulation, and S1P2 knockdown had the opposite effect. S1P2 overexpression suppressed Bax and active caspase 3 expression and promoted Bcl-2 expression, whereas loss of S1P2 reversed their expression. Additionally, S1P1 activation counteracted the effect of S1P2 on pain sensitivity. In conclusion, S1P2 is downregulated in CCI rats and may help modulate neuropathic pain via the ROS/RUNX3 pathway.
Collapse
Affiliation(s)
- Yinyu Li
- Department of Anesthesiology, Zhoukou Central Hospital, Zhoukou, China
| | - Huanli Li
- Department of Anesthesiology, Zhoukou Central Hospital, Zhoukou, China
| | - Jinsong Han
- Department of Anesthesiology, Zhoukou Central Hospital, Zhoukou, China
| |
Collapse
|
15
|
Patil M, Hovhannisyan AH, Wangzhou A, Mecklenburg J, Koek W, Goffin V, Grattan D, Boehm U, Dussor G, Price TJ, Akopian AN. Prolactin receptor expression in mouse dorsal root ganglia neuronal subtypes is sex-dependent. J Neuroendocrinol 2019; 31:e12759. [PMID: 31231869 PMCID: PMC6939775 DOI: 10.1111/jne.12759] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 02/01/2023]
Abstract
Sensory neurones exhibit sex-dependent responsiveness to prolactin (PRL). This could contribute to sexual dimorphism in pathological pain conditions. The present study aimed to determine the mechanisms underlying sex-dependent PRL sensitivity in sensory neurones. A quantitative reverse transcriptase-polymerase chain reaction shows that prolactin receptor (Prlr) long and short isoform mRNAs are expressed at comparable levels in female and male mouse dorsal root ganglia (DRG). In Prlrcre/+ ;Rosa26LSL-tDTomato/+ reporter mice, percentages of Prlr+ sensory neurones in female and male DRG are also similar. Characterisation of Prlr+ DRG neurones using immunohistochemistry and electrophysiology revealed that Prlr+ DRG neurones are mainly peptidergic nociceptors in females and males. However, sensory neurone type-dependent expression of Prlr is sex dimorphic. Thus, Prlr+ populations fell into three small- and two medium-large-sized sensory neuronal groups. Prlr+ DRG neurones are predominantly medium-large sized in males and are proportionally more comprised of small-sized sensory neurones in females. Specifically, Prlr+ /IB4+ /CGRP+ neurones are four- to five-fold higher in numbers in female DRG. By contrast, Prlr+ /IB4- /CGRP+ /5HT3a+ /NPYR2- are predominant in male DRG. Prlr+ /IB4- /CGRP- , Prlr+ /IB4- /CGRP+ and Prlr+ /IB4- /CGRP+ /NPYR2+ neurones are evenly encountered in female and male DRG. These differences were confirmed using an independently generated single-cell sequencing dataset. Overall, we propose a novel mechanism by which sensory neurone type-dependent expression of Prlr could explain the unique sex dimorphism in responsiveness of nociceptors to PRL.
Collapse
Affiliation(s)
- Mayur Patil
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Anahit H. Hovhannisyan
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080
| | - Jennifer Mecklenburg
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Wouter Koek
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | | | - David Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080
| | - Theodore J. Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson TX 75080
- Corresponding authors:Armen N. Akopian, The School of Dentistry, University of Texas Health Science Center @ San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, Office: (210) 567-6668 Fax: (210) 567-3389 , Theodore J. Price School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson TX 75080, Office: (972) 883-4311
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Corresponding authors:Armen N. Akopian, The School of Dentistry, University of Texas Health Science Center @ San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, Office: (210) 567-6668 Fax: (210) 567-3389 , Theodore J. Price School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson TX 75080, Office: (972) 883-4311
| |
Collapse
|
16
|
|
17
|
Castillo X, Castro-Obregón S, Gutiérrez-Becker B, Gutiérrez-Ospina G, Karalis N, Khalil AA, Lopez-Noguerola JS, Rodríguez LL, Martínez-Martínez E, Perez-Cruz C, Pérez-Velázquez J, Piña AL, Rubio K, García HPS, Syeda T, Vanoye-Carlo A, Villringer A, Winek K, Zille M. Re-thinking the Etiological Framework of Neurodegeneration. Front Neurosci 2019; 13:728. [PMID: 31396030 PMCID: PMC6667555 DOI: 10.3389/fnins.2019.00728] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative. This is not surprising as neurodegeneration progresses "silently" for decades before symptoms are noticed. Importantly, conceptual models with heuristic value used to study neurodegeneration have been constructed retrospectively, based on signs and symptoms already present in affected patients; a circumstance that may confound causes and consequences. Hence, innovative, paradigm-shifting views of the etiology of these diseases are necessary to enable their timely prevention and treatment. Here, we outline four alternative views, not mutually exclusive, on different etiological paths toward neurodegeneration. First, we propose neurodegeneration as being a secondary outcome of a primary cardiovascular cause with vascular pathology disrupting the vital homeostatic interactions between the vasculature and the brain, resulting in cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, United States
| | - Susana Castro-Obregón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamin Gutiérrez-Becker
- Artificial Intelligence in Medical Imaging KJP, Ludwig Maximilian University of Munich, Munich, Germany
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas y Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ahmed A. Khalil
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Liliana Lozano Rodríguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martínez-Martínez
- Cell Communication & Extracellular Vesicles Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Claudia Perez-Cruz
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - Judith Pérez-Velázquez
- Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Mathematische Modellierung Biologischer Systeme, Fakultät für Mathematik, Technische Universität München, Munich, Germany
| | - Ana Luisa Piña
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karla Rubio
- Lung Cancer Epigenetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Tauqeerunnisa Syeda
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - America Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Arno Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katarzyna Winek
- The Shimon Peres Postdoctoral Fellow at the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| |
Collapse
|
18
|
Jost WH, Buhmann C. The challenge of pain in the pharmacological management of Parkinson's disease. Expert Opin Pharmacother 2019; 20:1847-1854. [PMID: 31290336 DOI: 10.1080/14656566.2019.1639672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Introduction: Pain is a common symptom in Parkinson's disease (PD), impairing quality of life. The clinical appearance and the underlying etiologies are diverse. Different subtypes of pain may occur, with musculoskeletal pain considered to be the most frequent. Often there is also a combination of different causes of pain. There is a lack of controlled studies addressing pain therapy in PD. Areas covered: In this review the authors analyzed the currently available data, taking into account the available publications in the databases, especially PubMed. The authors further provided their expert perspectives on the challenges of treating pain in PD patients. Expert opinion: There is both nociceptive and neuropathic pain and in patients with PD, some PD-related pain and some unrelated. Diagnosis requires a thorough and differentiated history and examination, and targeted diagnostics. Therapeutically, many drugs are used, but the data is unfortunately limited and not specific. Medications used include Parkinson-related, mainly dopaminergic drugs, as well as opioids and non-opioid analgetics, anticonvulsives, antidepressants, and more recently cannabinoids. Currently, therapy is performed nonspecifically, without taking into account the special requirements of PD. Unfortunately, in many cases, pain is resistant to these therapies. In the future, both diagnostic and therapeutic efforts should be made to address this issue.
Collapse
Affiliation(s)
| | - Carsten Buhmann
- Department of Neurology, Center for Clinical Neurosciences, University Medical Center , Hamburg , Germany
| |
Collapse
|
19
|
Freo U, Romualdi P, Kress HG. Tapentadol for neuropathic pain: a review of clinical studies. J Pain Res 2019; 12:1537-1551. [PMID: 31190965 PMCID: PMC6529607 DOI: 10.2147/jpr.s190162] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain (NP) is an enormous burden for patients, caregivers and society. NP is a pain state that may develop after injury of the peripheral or central nervous system because of a wide range of diseases and traumas. A NP symptom component can be found also in several types of chronic pain. Many NP patients are substantially disabled for years. Due to its chronicity, severity and unpredictability, NP is difficult to treat. Tapentadol is a central-acting oral analgesic with combined opioid and noradrenergic properties, which make it potentially suitable for a wide range of pain conditions, particularly whenever a NP component is present or cannot be excluded. In randomized controlled trials, tapentadol has proved to be effective in relieving NP in diabetic peripheral neuropathy and in chronic low back pain. In observational studies, tapentadol reduced NP in chemotherapy-induced peripheral neuropathies, blood and solid cancers, and the NP component in neck pain and Parkinson's disease. This narrative review aims to provide clinicians with a broad overview of tapentadol effects on NP.
Collapse
Affiliation(s)
- Ulderico Freo
- Anesthesiology and Intensive Medicine, Department of Medicine DIMED, University of Padua, 35100Padua, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Hans G Kress
- Department of Special Anaesthesia and Pain Medicine, Medical University/AKH of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Maniati MS, Maniati M, Yousefi T, Ahmadi‐Ahangar A, Tehrani SS. New insights into the role of microRNAs and long noncoding RNAs in most common neurodegenerative diseases. J Cell Biochem 2019; 120:8908-8918. [DOI: 10.1002/jcb.28361] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Mohammad Saeed Maniati
- Student Research Committee, Babol University of Medical Sciences Babol Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Mahmood Maniati
- Department of English Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Tooba Yousefi
- Student Research Committee, Babol University of Medical Sciences Babol Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences Babol Iran
| | - Alijan Ahmadi‐Ahangar
- Mobility Impairment Research Center, Babol University of Medical Sciences Babol Iran
| | - Sadra Samavarchi Tehrani
- Student Research Committee, Babol University of Medical Sciences Babol Iran
- Mobility Impairment Research Center, Babol University of Medical Sciences Babol Iran
| |
Collapse
|
21
|
Blanchet PJ, Brefel-Courbon C. Chronic pain and pain processing in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:200-206. [PMID: 29031913 DOI: 10.1016/j.pnpbp.2017.10.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/26/2017] [Accepted: 10/07/2017] [Indexed: 12/24/2022]
Abstract
Pain is experienced by the vast majority of patients living with Parkinson's disease. It is most often of nociceptive origin, but may also be ascribed to neuropathic (radicular or central) or miscellaneous sources. The recently validated King's Parkinson's Disease Pain Scale is based on 7 domains including musculoskeletal pain, chronic body pain (central or visceral), fluctuation-related pain, nocturnal pain, oro-facial pain, pain with discolouration/oedema/swelling, and radicular pain. The basal ganglia integrate incoming nociceptive information and contribute to coordinated motor responses in pain avoidance and nocifensive behaviors. In Parkinson's disease, nigral and extra-nigral pathology, involving cortical areas, brainstem nuclei, and spinal cord, may contribute to abnormal central nociceptive processing in patients experiencing pain or not. The dopamine deficit lowers multimodal pain thresholds that are amenable to correction following levodopa dosing. Functional brain imaging with positron emission tomography following administration of H215O revealed abnormalities in the sensory discriminative processing of pain (insula/SII), as well as in the affective motivational processing of pain (anterior cingulate cortex, prefrontal cortex). Pain management is dependent on efforts invested in diagnostic accuracy to distinguish nociceptive from neuropathic pain. Treatment requires an integrated approach including strategies to lessen levodopa-related response fluctuations, in addition to other pharmacological and non-pharmacological options such as deep brain stimulation and rehabilitation.
Collapse
Affiliation(s)
- Pierre J Blanchet
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal; Montréal, QC, Canada; Service de neurologie, CHU Montréal, Montréal, QC, Canada.
| | - Christine Brefel-Courbon
- Service de Pharmacologie Clinique, Faculty of Medicine, University Hospital, Toulouse, France; Service de neurologie B8, Pierre Paul Riquet Hospital, University Hospital, Toulouse, France.
| |
Collapse
|
22
|
Pain in Urology: Pathophysiological Aspects of Pain and Chronicity. Urologia 2018; 81:4-15. [DOI: 10.5301/uro.5000084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 11/20/2022]
Abstract
Chronic pain has been traditionally defined by pain duration, but this approach has limited empirical support and does not account for chronic pain multidimensionality. Defining chronic pain solely by duration is based on the view that acute pain signals potential tissue damage, whereas chronic pain results from central sensitization in which pain is sustained after nociceptive inputs have diminished. Chronic urological pain is a prevalent condition, which can represent a major challenge to health care providers due to its complex aetiology and poor response to therapy. In most cases, clear signs of on-going tissue trauma, inflammation or infection are not present. Despite this, more underhanded pathophysiological mechanisms, affecting the urinary system or other pelvic organ systems (musculoskeletal, neurologic, urologic, gynaecologic) and some psychological aspects may be present. In this article, some pathophysiological aspects of visceral pain are discussed; the definition of ‘chronic pain’, the mechanism of action of drugs used in the treatment of pain and the rationale for association therapy are also reviewed.
Collapse
|
23
|
Merino P, Santos-López JA, Mateos CJ, Meseguer I, Garcimartín A, Bastida S, Sánchez-Muniz FJ, Benedí J, González-Muñoz MJ. Can nonalcoholic beer, silicon and hops reduce the brain damage and behavioral changes induced by aluminum nitrate in young male Wistar rats? Food Chem Toxicol 2018; 118:784-794. [PMID: 29886234 DOI: 10.1016/j.fct.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/29/2018] [Accepted: 06/03/2018] [Indexed: 12/30/2022]
Abstract
Aluminum consumption has been associated with various neurodegenerative diseases. Previous studies suggest that regular beer intake reverses the pro-oxidant and inflammatory statuses induced by aluminum nitrate intoxication. This paper aims to evaluate the in vitro antioxidant capacity and acetylcholinesterase inhibitory activity of non-alcoholic beer (NABeer), silicon or hops, as well as their effect on animal behavior (e.g. curiosity, immobilization, rearing, grooming, swimming) and brain antioxidant enzyme (activity and gene expression) and anti-inflammatory status in aluminum nitrate intoxicated rats. Male Wistar rats were divided into five groups: 1) Control, 2) Aluminum nitrate (450 μg/kg/day), 3) Aluminum nitrate plus NABeer, 4) Aluminum nitrate plus hops, and 5) Aluminum nitrate plus silicon. Hops showed the highest in vitro antioxidant capacity and silicon the highest anticholinesterase activity. In the Aluminum group the brain aluminum/silicon ratio increased with impairment of brain antioxidant and inflammatory statuses. NABeer, silicon and hops block the negative effect on the in vivo antioxidant and inflammatory statuses induced by Aluminum nitrate and improve swimming and rearing behavioral tests. The various positive results suggest that NABeer is useful as a functional multi-target drink in the prevention of some neurodegenerative events caused by aluminum intoxication. More studies are required to conclude present results.
Collapse
Affiliation(s)
- P Merino
- Departamento de Ciencias Biomédicas, Unidad Docente de Toxicología, Facultad de Farmacia, Universidad de Alcalá, Madrid, Spain
| | - J A Santos-López
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain(2)
| | - C J Mateos
- Departamento de Ciencias Biomédicas, Unidad Docente de Toxicología, Facultad de Farmacia, Universidad de Alcalá, Madrid, Spain
| | - I Meseguer
- Departamento de Ciencias Biomédicas, Unidad Docente de Toxicología, Facultad de Farmacia, Universidad de Alcalá, Madrid, Spain
| | - A Garcimartín
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain(2)
| | - S Bastida
- Departamento de Nutrición y Ciencia de los alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - F J Sánchez-Muniz
- Departamento de Nutrición y Ciencia de los alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - J Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain(2).
| | - M J González-Muñoz
- Departamento de Ciencias Biomédicas, Unidad Docente de Toxicología, Facultad de Farmacia, Universidad de Alcalá, Madrid, Spain.
| |
Collapse
|
24
|
Gandolfi M, Geroin C, Antonini A, Smania N, Tinazzi M. Understanding and Treating Pain Syndromes in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 134:827-858. [PMID: 28805585 DOI: 10.1016/bs.irn.2017.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pain affects many people with Parkinson's disease (PD) and diminishes their quality of life. Different types of pain have been described, but their related pathophysiological mechanisms remain unclear. The aim of this chapter is to provide movement disorders specialists an update about the pathophysiology of pain and a practical guide for the management of pain syndromes in clinical practice. This chapter reviews current knowledge on the pathophysiological mechanisms of sensory changes and pain in PD, as well as assessment and treatment procedures to manage these symptoms. In summary, changes in peripheral and central pain processing have been demonstrated in PD patients. A decrease in pain threshold and tolerance to several stimuli, a reduced nociceptive withdrawal reflex, a reduced pain threshold, and abnormal pain-induced activation in cortical pain-related areas have been reported. There is no direct association between improvement of motor symptoms and sensory/pain changes, suggesting that motor and nonmotor symptoms do not inevitably share the same mechanisms. Special care in pain assessment in PD is warranted by the specific pathophysiological aspects and the complexity of motor and nonmotor symptoms associated with pain symptoms. Rehabilitation may represent a valid option to manage pain syndromes in PD. However, further research in this field is needed. An integrated approach to pain involving a multidisciplinary team of medical specialists and rehabilitation experts should allow a comprehensive approach to pain in PD.
Collapse
Affiliation(s)
- Marialuisa Gandolfi
- Neuromotor and Cognitive Rehabilitation Research Center (CRRNC), University of Verona, Verona, Italy; Neurorehabilitation Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Christian Geroin
- Neuromotor and Cognitive Rehabilitation Research Center (CRRNC), University of Verona, Verona, Italy
| | - Angelo Antonini
- University of Padua and Hospital San Camillo IRCCS, Venice, Italy
| | - Nicola Smania
- Neuromotor and Cognitive Rehabilitation Research Center (CRRNC), University of Verona, Verona, Italy; Neurorehabilitation Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Michele Tinazzi
- Neurology Unit, Movement Disorders Division, University of Verona, Verona, Italy.
| |
Collapse
|
25
|
Grigoletto J, Pukaß K, Gamliel A, Davidi D, Katz-Brull R, Richter-Landsberg C, Sharon R. Higher levels of myelin phospholipids in brains of neuronal α-Synuclein transgenic mice precede myelin loss. Acta Neuropathol Commun 2017; 5:37. [PMID: 28482862 PMCID: PMC5421332 DOI: 10.1186/s40478-017-0439-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/26/2017] [Indexed: 01/22/2023] Open
Abstract
α-Synuclein is a protein involved in the pathogenesis of synucleinopathies, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). We investigated the role of neuronal α-Syn in myelin composition and abnormalities. The phospholipid content of purified myelin was determined by 31P NMR in two mouse lines modeling PD, PrP-A53T α-Syn and Thy-1 wt-α-Syn. Significantly higher levels of phospholipids were detected in myelin purified from brains of these α-Syn transgenic mouse models than in control mice. Nevertheless, myelin ultrastructure appeared intact. To further investigate the effect of α-Syn on myelin abnormalities, we systematically analyzed the striatum, a brain region associated with neurodegeneration in PD. An age and disease-dependent loss of myelin basic protein (MBP) signal was detected by immunohistochemistry in striatal striosomes (patches). The age-dependent loss of MBP signal was associated with lower P25α levels in oligodendrocytes. In addition, we found that α-Syn inhibited oligodendrocyte maturation and the formation of membranous sheets in vitro. Based on these results we concluded that neuronal α-Syn is involved in the regulation and/or maintenance of myelin phospholipid. However, axonal hypomyelination in the PD models is evident only in progressive stages of the disease and associated with α-Syn toxicity.
Collapse
|
26
|
Areti A, Komirishetty P, Kumar A. Carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin-evoked painful peripheral neuropathy. Toxicol Appl Pharmacol 2017; 322:97-103. [PMID: 28286117 DOI: 10.1016/j.taap.2017.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Abstract
Oxaliplatin use as chemotherapeutic agent is frequently limited by cumulative neurotoxicity which may compromise quality of life. Reports relate this neurotoxic effect to oxidative stress and mitochondrial dysfunction in peripheral nerves and dorsal root ganglion (DRG). Carvedilol is an antihypertensive drug, has also been appreciated for its antioxidant and mitoprotective properties. Carvedilol co-treatment did not reduce the anti-tumor effects of oxaliplatin in human colon cancer cells (HT-29), but exhibited free radical scavenging activity against oxaliplatin-induced oxidative stress in neuronal cells (Neuro-2a). Hence, the present study was designed to investigate the effect of carvedilol in the experimental model of oxaliplatin-induced peripheral neuropathy (OIPN) in Sprague-Dawley rats. Oxaliplatin reduced the sensory nerve conduction velocity and produced the thermal and mechanical nociception. Carvedilol significantly (P<0.001) attenuated these functional and sensorimotor deficits. It also counteracted oxidative/nitrosative stress by reducing the levels of nitrotyrosine and improving the mitochondrial superoxide dismutase expression in both sciatic nerve and DRG tissues. It improved the mitochondrial function and prevented the oxaliplatin-induced alteration in mitochondrial membrane potential in sciatic nerve thus prevented loss of intra epidermal nerve fiber density in the foot pads. Together the results prompt the use of carvedilol along with chemotherapy with oxaliplatin to prevent the peripheral neuropathy.
Collapse
Affiliation(s)
- Aparna Areti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Prashanth Komirishetty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India.
| |
Collapse
|
27
|
Kubo SI, Hamada S, Maeda T, Uchiyama T, Hashimoto M, Nomoto N, Kano O, Takahashi T, Terashi H, Takahashi T, Hatano T, Hasegawa T, Baba Y, Sengoku R, Watanabe H, Kadowaki T, Inoue M, Kaneko S, Shimura H, Nagayama H. A Japanese multicenter survey characterizing pain in Parkinson's disease. J Neurol Sci 2016; 365:162-6. [DOI: 10.1016/j.jns.2016.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 01/31/2023]
|
28
|
Zhu M, Li M, Ye D, Jiang W, Lei T, Shu K. Sensory symptoms in Parkinson's disease: Clinical features, pathophysiology, and treatment. J Neurosci Res 2016; 94:685-92. [PMID: 26948282 DOI: 10.1002/jnr.23729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/30/2016] [Accepted: 02/15/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Mingxin Zhu
- Department of Neurosurgery; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Man Li
- Department of Anesthesiology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Dawei Ye
- Department of Neoplasm; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Wei Jiang
- Department of Neurosurgery; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Ting Lei
- Department of Neurosurgery; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| | - Kai Shu
- Department of Neurosurgery; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
29
|
|
30
|
Yerra VG, Gundu C, Bachewal P, Kumar A. Autophagy: The missing link in diabetic neuropathy? Med Hypotheses 2016; 86:120-8. [DOI: 10.1016/j.mehy.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022]
|
31
|
Cury R, Galhardoni R, Fonoff E, Perez Lloret S, dos Santos Ghilardi M, Barbosa E, Teixeira M, Ciampi de Andrade D. Sensory abnormalities and pain in Parkinson disease and its modulation by treatment of motor symptoms. Eur J Pain 2015; 20:151-65. [DOI: 10.1002/ejp.745] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2015] [Indexed: 01/07/2023]
Affiliation(s)
- R.G. Cury
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
- Pain Center; Instituto do Câncer do Estado de São Paulo; São Paulo Brazil
- Movement Disorders Group; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - R. Galhardoni
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - E.T. Fonoff
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
- Transcranial Magnetic Stimulation Laboratory; Psychiatry Institute; University of São Paulo; São Paulo Brazil
- Neurosurgery Division; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - S. Perez Lloret
- Laboratory of Clinical Pharmacology and Epidemiology; Catholic University; Buenos Aires Argentina
| | | | - E.R. Barbosa
- Movement Disorders Group; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - M.J. Teixeira
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
- Pain Center; Instituto do Câncer do Estado de São Paulo; São Paulo Brazil
- Movement Disorders Group; Department of Neurology; University of São Paulo; São Paulo Brazil
- Transcranial Magnetic Stimulation Laboratory; Psychiatry Institute; University of São Paulo; São Paulo Brazil
- Neurosurgery Division; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - D. Ciampi de Andrade
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
- Pain Center; Instituto do Câncer do Estado de São Paulo; São Paulo Brazil
- Transcranial Magnetic Stimulation Laboratory; Psychiatry Institute; University of São Paulo; São Paulo Brazil
| |
Collapse
|
32
|
Selective impact of Tau loss on nociceptive primary afferents and pain sensation. Exp Neurol 2014; 261:486-93. [DOI: 10.1016/j.expneurol.2014.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/08/2014] [Accepted: 07/20/2014] [Indexed: 01/06/2023]
|
33
|
Neuroprotective Effect of Coenzyme Q10 in Chronic Constriction Injury-Induced Neuropathic Pain in Rat. ACTA ACUST UNITED AC 2014. [DOI: 10.5812/thrita.16607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
|
35
|
Kim S, Hwang SW. Emerging roles of TRPA1 in sensation of oxidative stress and its implications in defense and danger. Arch Pharm Res 2013; 36:783-91. [PMID: 23558672 DOI: 10.1007/s12272-013-0098-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/13/2013] [Indexed: 11/28/2022]
Abstract
Transient receptor potential ankyrin subtype 1 (TRPA1) is a well-known ion channel that play a central role for pain sensation. In the peripheral sensory nerve terminals innervating the body tegument or organs, TRPA1 detects and is activated by diverse harmful environmental and internal stimuli. The TRPA1 activation results in neuronal firing, which finally sends a warning signal to our brain. However, sensitization or sustained activation of TRPA1 often causes plastic changes both in the neural pathway and in the peripheral tissues, leading to a pathologic state in tissue health and pain mediation. Recently, a unique covalent detection mode for reactive biological attacks was uncovered in the sensory mechanisms of TRPA1. Notably, the pool of the newly found reactive stimulators for TRPA1 includes oxidative stress. Here, we overview the nature of this interaction, and try to find biological meanings of the participation of such a rapid ionotrophic component in disease exacerbations. Acutely, its relatively rapid response can be understood in terms of efficiency for avoiding harmful milieu as quickly as possible, as implicated in the raison d'etre of the pain mechanism. Nonetheless, complex situations in a chronic disease progress may occur. As well, multiple interplays with known molecules on the redox defense mechanism are anticipated. At a therapeutic angle, how to control TRPA1 for promoting body's defensive potential will be a practical question but remains to be answered. Future investigations will likely give more detailed insights to understand the roles and target validity of TRPA1.
Collapse
Affiliation(s)
- Sangseong Kim
- Institute of Pharmaceutical Science and Technology, Hanyang University College of Pharmacy, ERICA Campus, Sangrok-Gu, Ansan-Shi, Gyeonggi-Do, 426-791, South Korea.
| | | |
Collapse
|
36
|
Chen CCV, Shih YYI, Chang C. Dopaminergic imaging of nonmotor manifestations in a rat model of Parkinson's disease by fMRI. Neurobiol Dis 2013; 49:99-106. [DOI: 10.1016/j.nbd.2012.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/04/2012] [Accepted: 07/20/2012] [Indexed: 11/29/2022] Open
|
37
|
Mozziconacci O, Mirkowski J, Rusconi F, Kciuk G, Wisniowski PB, Bobrowski K, Houée-Levin C. Methionine Residue Acts as a Prooxidant in the •OH-Induced Oxidation of Enkephalins. J Phys Chem B 2012; 116:12460-72. [DOI: 10.1021/jp307043q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olivier Mozziconacci
- Laboratory of Physical Chemistry and CNRS Bldg 350, Centre Universitaire, F-91405
Orsay, F-91405 Orsay, France
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
- Department
of Pharmaceutical
Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Jacek Mirkowski
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
| | - Filippo Rusconi
- Laboratory of Physical Chemistry and CNRS Bldg 350, Centre Universitaire, F-91405
Orsay, F-91405 Orsay, France
- Muséum National d’Histoire
Naturelle, CNRS, UMR7196 - INSERM, U565 - MNHN USM0503, 57 rue Cuvier, F-75231 Paris Cedex-05, France
| | - Gabriel Kciuk
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
| | - Pawel B. Wisniowski
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
| | - Krzysztof Bobrowski
- Institute of Nuclear Chemistry and Technology, Dorodna, 16, 03-195 Warsaw,
Poland
| | - Chantal Houée-Levin
- Laboratory of Physical Chemistry and CNRS Bldg 350, Centre Universitaire, F-91405
Orsay, F-91405 Orsay, France
| |
Collapse
|
38
|
Kleggetveit IP, Namer B, Schmidt R, Helås T, Rückel M, Ørstavik K, Schmelz M, Jørum E. High spontaneous activity of C-nociceptors in painful polyneuropathy. Pain 2012; 153:2040-2047. [DOI: 10.1016/j.pain.2012.05.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 05/07/2012] [Accepted: 05/15/2012] [Indexed: 02/07/2023]
|
39
|
Srinivasan V, Lauterbach EC, Ho KY, Acuña-Castroviejo D, Zakaria R, Brzezinski A. Melatonin in antinociception: its therapeutic applications. Curr Neuropharmacol 2012; 10:167-78. [PMID: 23204986 PMCID: PMC3386506 DOI: 10.2174/157015912800604489] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 12/15/2022] Open
Abstract
The intensity of pain sensation exhibits marked day and night variations. Since the intensity of pain perception is low during dark hours of the night when melatonin levels are high, this hormone has been implicated as one of the prime antinociceptive substances. A number of studies have examined the antinociceptive role of melatonin in acute, inflammatory and neuropathic pain animal models. It has been demonstrated that melatonin exerts antinociceptive actions by acting at both spinal cord and supraspinal levels. The mechanism of antinociceptive actions of melatonin involves opioid, benzodiazepine, α(1)- and α(2)-adrenergic, serotonergic and cholinergic receptors. Most importantly however, the involvement of MT(1)/MT(2) melatonergic receptors in the spinal cord has been well documented as an antinociceptive mechanism in a number of animal models of pain perception. Exogenous melatonin has been used effectively in the management of pain in medical conditions such as fibromyalgia, irritable bowel syndrome and migraine and cluster headache. Melatonin has been tried during surgical operating conditions and has been shown to enhance both preoperative and post-operative analgesia. The present review discusses the available evidence indicating that melatonin, acting through MT(1)/MT(2) melatonin receptors, plays an important role in the pathophysiological mechanism of pain.
Collapse
Affiliation(s)
- Venkatramanujam Srinivasan
- Sri Sathya Sai Medical Educational and Research Foundation, Medical Sciences Research Study Center, Prasanthi Nilayam, 40 Kovai Thirunagar, Coimbatore-641014, Tamilnadu, India
| | - Edward C Lauterbach
- Department of Psychiatry and Internal Medicine (Neurology Section), Mercer University School of Medicine, Macon GA31201, USA
| | - Khek Yu Ho
- Department of Medicine, National University Hospital, National University of Singapore Lowerkent Bridge Road, Singapore
| | - Dario Acuña-Castroviejo
- Instituto def Biotecnología, Centro de Investigaicón Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avda del Conocimiento, 18100-Armilla, Granada, Spain
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Amnon Brzezinski
- Department of Obstetrics and Gynecology, Hadassah Medical Center, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
40
|
Del Tredici K, Braak H. Lewy pathology and neurodegeneration in premotor Parkinson's disease. Mov Disord 2012; 27:597-607. [DOI: 10.1002/mds.24921] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
41
|
Pain in Parkinson's disease. Mov Disord 2011; 27:485-91. [DOI: 10.1002/mds.23959] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 11/07/2022] Open
|
42
|
Abstract
The myriad pain pathophysiology has intrigued and challenged humanity for centuries. In this regard, the traditional pain therapies such as opioids and nonsteroidal anti-inflammatory drugs have been highly successful in treating acute and chronic pain. However, their drawback includes adverse events such as psychotropic effects, addiction potential, and gastrointestinal toxicities, to mention a few. These factors combined with the likelihood of an increase in chronic pain conditions due to an aging population calls for the development of novel mechanism-based or "site-specific" agents to target novel pain pathways. In this regard, rapid progress has been made in understanding the molecular mechanisms of novel pain targets such as cannabinoid receptors, fatty acid hydrolase, voltage-gated and ligand-gated ion channels such as P2 receptors, transient receptor potential channels and glial cell modulators. Accordingly, preclinical studies indicate that the site-specific/selective agents exhibit sufficient efficacy and reduced side effects such as lack of psychotropic effects indicating their clinical potential. This review provides a brief summary of some "at-site" pain targets and their role in the pain pathophysiology, and describes the efforts in developing some small molecules as novel pain therapeutics.
Collapse
Affiliation(s)
- Praveen Pn Rao
- School of Pharmacy, Health Sciences Campus, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|