1
|
Gopaul M, Altalib H. Do psychotropic drugs cause seizures? Epilepsy Behav Rep 2024; 27:100679. [PMID: 38881884 PMCID: PMC11179069 DOI: 10.1016/j.ebr.2024.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
Patients with epilepsy often present with concurrent psychiatric disorders, posing unique challenges for healthcare providers. This review explores the intricate relationship between psychiatric comorbidities, epilepsy, and psychotropic medications to inform clinical decision-making. The bidirectional association between epilepsy and psychiatric conditions complicates treatment, with psychiatric symptoms preceding or following seizure onset. The review discusses the seizure risks associated with antidepressants, CNS stimulants, and antipsychotics, shedding light on both historical perspectives and recent empirical evidence. Antidepressants, particularly tricyclic antidepressants (TCAs), are known to pose seizure risks, while newer agents like selective serotonin reuptake inhibitors (SSRIs) exhibit lower incidences and even potential anticonvulsant effects. Contrary to common beliefs, CNS stimulants used in attention-deficit/hyperactivity disorder (ADHD) treatment show efficacy without significantly increasing seizure risk. However, the association between ADHD and seizures warrants careful consideration. Among antipsychotics, clozapine stands out for its heightened seizure risks, especially during titration and at high doses, necessitating close monitoring and individualized approaches. Understanding the nuanced seizure risks associated with different psychotropic medications is crucial for optimizing patient care and minimizing iatrogenic seizures in this vulnerable population. By recognizing the complexities of psychiatric comorbidities in epilepsy and considering the unique challenges they pose, healthcare providers can make informed decisions to enhance patient safety and treatment outcomes. This review offers practical insights to guide clinicians in navigating the intricate landscape of managing psychiatric comorbidities in patients with epilepsy.
Collapse
Affiliation(s)
- Margaret Gopaul
- Yale Comprehensive Epilepsy Center, Dept. of Neurology, Yale University School of Medicine New Haven, CT, USA
- Veteran Administration (VA) Epilepsy Center of Excellence in West Haven, CT, USA
| | - Hamada Altalib
- Yale Comprehensive Epilepsy Center, Dept. of Neurology, Yale University School of Medicine New Haven, CT, USA
- Veteran Administration (VA) Epilepsy Center of Excellence in West Haven, CT, USA
| |
Collapse
|
2
|
Zhang M, An H, Zhang F, Jiang H, Wan T, Wen Y, Han N, Zhang P. Prospects of Using Chitosan-Based Biopolymers in the Treatment of Peripheral Nerve Injuries. Int J Mol Sci 2023; 24:12956. [PMID: 37629137 PMCID: PMC10454829 DOI: 10.3390/ijms241612956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Peripheral nerve injuries are common neurological disorders, and the available treatment options, such as conservative management and surgical repair, often yield limited results. However, there is growing interest in the potential of using chitosan-based biopolymers as a novel therapeutic approach to treating these injuries. Chitosan-based biopolymers possess unique characteristics, including biocompatibility, biodegradability, and the ability to stimulate cell proliferation, making them highly suitable for repairing nerve defects and promoting nerve regeneration and functional recovery. Furthermore, these biopolymers can be utilized in drug delivery systems to control the release of therapeutic agents and facilitate the growth of nerve cells. This comprehensive review focuses on the latest advancements in utilizing chitosan-based biopolymers for peripheral nerve regeneration. By harnessing the potential of chitosan-based biopolymers, we can pave the way for innovative treatment strategies that significantly improve the outcomes of peripheral nerve injury repair, offering renewed hope and better prospects for patients in need.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; (H.A.)
| | - Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Haoran Jiang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; (H.A.)
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| |
Collapse
|
3
|
Carta G, Fornasari BE, Fregnan F, Ronchi G, De Zanet S, Muratori L, Nato G, Fogli M, Gambarotta G, Geuna S, Raimondo S. Neurodynamic Treatment Promotes Mechanical Pain Modulation in Sensory Neurons and Nerve Regeneration in Rats. Biomedicines 2022; 10:biomedicines10061296. [PMID: 35740318 PMCID: PMC9220043 DOI: 10.3390/biomedicines10061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Somatic nerve injuries are a rising problem leading to disability associated with neuropathic pain commonly reported as mechanical allodynia (MA) and hyperalgesia. These symptoms are strongly dependent on specific processes in the dorsal root ganglia (DRG). Neurodynamic treatment (NDT), consisting of selective uniaxial nerve repeated tension protocols, effectively reduces pain and disability in neuropathic pain patients even though the biological mechanisms remain poorly characterized. We aimed to define, both in vivo and ex vivo, how NDT could promote nerve regeneration and modulate some processes in the DRG linked to MA and hyperalgesia. Methods: We examined in Wistar rats, after unilateral median and ulnar nerve crush, the therapeutic effects of NDT and the possible protective effects of NDT administered for 10 days before the injury. We adopted an ex vivo model of DRG organotypic explant subjected to NDT to explore the selective effects on DRG cells. Results: Behavioural tests, morphological and morphometrical analyses, and gene and protein expression analyses were performed, and these tests revealed that NDT promotes nerve regeneration processes, speeds up sensory motor recovery, and modulates mechanical pain by affecting, in the DRG, the expression of TACAN, a mechanosensitive receptor shared between humans and rats responsible for MA and hyperalgesia. The ex vivo experiments have shown that NDT increases neurite regrowth and confirmed the modulation of TACAN. Conclusions: The results obtained in this study on the biological and molecular mechanisms induced by NDT will allow the exploration, in future clinical trials, of its efficacy in different conditions of neuropathic pain.
Collapse
Affiliation(s)
- Giacomo Carta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
- Department of Rehabilitation, ASST (Azienda Socio Sanitaria Territoriali) Nord Milano, Sesto San Giovanni Hospital, Sesto San Giovanni, 20099 Milano, Italy
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Correspondence: ; Tel.: +39-(0)1-1670-5433; Fax: +39-(0)1-1903-8639
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Stefano De Zanet
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Giulia Nato
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
- Department of Life Sciences and Systems Biology, University of Torino, 10124 Torino, Italy
| | - Marco Fogli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
- Department of Life Sciences and Systems Biology, University of Torino, 10124 Torino, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy; (G.C.); (B.E.F.); (G.R.); (S.D.Z.); (L.M.); (G.G.); (S.G.); (S.R.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Torino, Italy; (G.N.); (M.F.)
| |
Collapse
|
4
|
Carta G, Gambarotta G, Fornasari BE, Muratori L, El Soury M, Geuna S, Raimondo S, Fregnan F. The neurodynamic treatment induces biological changes in sensory and motor neurons in vitro. Sci Rep 2021; 11:13277. [PMID: 34168249 PMCID: PMC8225768 DOI: 10.1038/s41598-021-92682-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Nerves are subjected to tensile forces in various paradigms such as injury and regeneration, joint movement, and rehabilitation treatments, as in the case of neurodynamic treatment (NDT). The NDT induces selective uniaxial repeated tension on the nerve and was described to be an effective treatment to reduce pain in patients. Nevertheless, the biological mechanisms activated by the NDT promoting the healing processes of the nerve are yet still unknown. Moreover, a dose-response analysis to define a standard protocol of treatment is unavailable. In this study, we aimed to define in vitro whether NDT protocols could induce selective biological effects on sensory and motor neurons, also investigating the possible involved molecular mechanisms taking a role behind this change. The obtained results demonstrate that NDT induced significant dose-dependent changes promoting cell differentiation, neurite outgrowth, and neuron survival, especially in nociceptive neurons. Notably, NDT significantly upregulated PIEZO1 gene expression. A gene that is coding for an ion channel that is expressed both in murine and human sensory neurons and is related to mechanical stimuli transduction and pain suppression. Other genes involved in mechanical allodynia related to neuroinflammation were not modified by NDT. The results of the present study contribute to increase the knowledge behind the biological mechanisms activated in response to NDT and to understand its efficacy in improving nerve regenerational physiological processes and pain reduction.
Collapse
Affiliation(s)
- Giacomo Carta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- ASST Nord Milano, Sesto San Giovanni Hospital, Milan, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy.
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy.
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| |
Collapse
|
5
|
Keating CE, Cullen DK. Mechanosensation in traumatic brain injury. Neurobiol Dis 2020; 148:105210. [PMID: 33259894 DOI: 10.1016/j.nbd.2020.105210] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is distinct from other neurological disorders because it is induced by a discrete event that applies extreme mechanical forces to the brain. This review describes how the brain senses, integrates, and responds to forces under both normal conditions and during injury. The response to forces is influenced by the unique mechanical properties of brain tissue, which differ by region, cell type, and sub-cellular structure. Elements such as the extracellular matrix, plasma membrane, transmembrane receptors, and cytoskeleton influence its properties. These same components also act as force-sensors, allowing neurons and glia to respond to their physical environment and maintain homeostasis. However, when applied forces become too large, as in TBI, these components may respond in an aberrant manner or structurally fail, resulting in unique pathological sequelae. This so-called "pathological mechanosensation" represents a spectrum of cellular responses, which vary depending on the overall biomechanical parameters of the injury and may be compounded by repetitive injuries. Such aberrant physical responses and/or damage to cells along with the resulting secondary injury cascades can ultimately lead to long-term cellular dysfunction and degeneration, often resulting in persistent deficits. Indeed, pathological mechanosensation not only directly initiates secondary injury cascades, but this post-physical damage environment provides the context in which these cascades unfold. Collectively, these points underscore the need to use experimental models that accurately replicate the biomechanics of TBI in humans. Understanding cellular responses in context with injury biomechanics may uncover therapeutic targets addressing various facets of trauma-specific sequelae.
Collapse
Affiliation(s)
- Carolyn E Keating
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA.
| |
Collapse
|
6
|
Abstract
Current animal models of chronic peripheral nerve compression are mainly silicone tube models. However, the cross section of the rat sciatic nerve is not a perfect circle, and there are differences in the diameter of the sciatic nerve due to individual differences. The use of a silicone tube with a uniform internal diameter may not provide a reliable and consistent model. We have established a chronic sciatic nerve compression model that can induce demyelination of the sciatic nerve and lead to atrophy of skeletal muscle. In 3-week-old pups and adult rats, the sciatic nerve of the right hind limb was exposed, and a piece of surgical latex glove was gently placed under the nerve. N-butyl-cyanoacrylate was then placed over the nerve, and after it had set, another piece of glove latex was placed on top of the target area and allowed to adhere to the first piece to form a sandwich-like complex. Thus, a chronic sciatic nerve compression model was produced. Control pups with latex or N-butyl-cyanoacrylate were also prepared. Functional changes to nerves were assessed using the hot plate test and electromyography. Immunofluorescence and electron microscopy analyses of the nerves were performed to quantify the degree of neuropathological change. Masson staining was conducted to assess the degree of fibrosis in the gastrocnemius and intrinsic paw muscles. The pup group rats subjected to nerve compression displayed thermal hypoesthesia and a gradual decrease in nerve conduction velocity at 2 weeks after surgery. Neuropathological studies demonstrated that the model caused nerve demyelination and axonal irregularities and triggered collagen deposition in the epineurium and perineurium of the affected nerve at 8 weeks after surgery. The degree of fibrosis in the gastrocnemius and intrinsic paw muscles was significantly increased at 20 weeks after surgery. In conclusion, our novel model can reproduce the functional and histological changes of chronic nerve compression injury that occurs in humans and it will be a useful new tool for investigating the mechanisms underlying chronic nerve compression.
Collapse
Affiliation(s)
- Zhen-Yu Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen-Bing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiang-Hai Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
7
|
Zhu D, Tapadia MD, Palispis W, Luu M, Wang W, Gupta R. Attenuation of Robust Glial Scar Formation Facilitates Functional Recovery in Animal Models of Chronic Nerve Compression Injury. J Bone Joint Surg Am 2017; 99:e132. [PMID: 29257018 DOI: 10.2106/jbjs.17.00396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Late surgery for chronic nerve compression injuries usually improves sensation but rarely reverses motor atrophy. We hypothesized that a persistent glial scar after chronic nerve compression injury might account for poor motor recovery and that degradation of the glial scar as an adjunct to surgical decompression would improve functional recovery. METHODS A previously described model of chronic nerve compression injury was created in C57BL/6 mice and Sprague-Dawley rats, and the nerves were harvested early or late after electrophysiological confirmation of the injury. Western blot, polymerase chain reaction, and quantitative immunohistochemical analyses were performed to determine levels of chondroitin sulfate proteoglycans and extracellular matrix molecules. Subsets of mice were treated either with surgical decompression alone or with decompression coupled with intraepineurial injection of a low dose (0.1 μgμL) or a high dose (0.2 μg/μL) of chondroitinase ABC at 6 weeks after injury. RESULTS Aggrecan showed the greatest change in mRNA and protein levels at the early and late time points following creation of the chronic nerve compression injury. Quantitative immunohistochemical analysis revealed early aggrecan upregulation localized primarily to the endoneurium and late upregulation localized to the perineurium and epineurium (p < 0.0105). Quantitative immunohistochemical analysis for collagen IV, laminin-α2, and fibronectin also showed early upregulation with perineurial scarring. Quantitative immunohistochemical analysis and Western blot analysis for aggrecan demonstrated a marked increase in the endoneurium at the early time points and upregulation of expression in the epineurium and perineurium at the late time points. Decompression along with intraepineurial injection of high-dose chondroitinase ABC at 6 weeks after creation of the compression injury resulted in marked attenuation of decorin and aggrecan expression with functional improvement in nerve conduction velocity. CONCLUSIONS Significant upregulation of chondroitin sulfate proteoglycans and other extracellular matrix components contributes to the pathogenesis of compression neuropathies in murine models. The administration of chondroitinase ABC degrades these chondroitin sulfate proteoglycans and improves functional recovery after chronic nerve compression injury; thus, it can be considered as a possible therapeutic adjunct.
Collapse
Affiliation(s)
- Diana Zhu
- Peripheral Nerve Research Laboratory, Department of Orthopaedic Surgery, University of California, Irvine, Irvine, California
| | - Minal D Tapadia
- Peripheral Nerve Research Laboratory, Department of Orthopaedic Surgery, University of California, Irvine, Irvine, California
| | - Winnie Palispis
- Peripheral Nerve Research Laboratory, Department of Orthopaedic Surgery, University of California, Irvine, Irvine, California
| | - Michele Luu
- Peripheral Nerve Research Laboratory, Department of Orthopaedic Surgery, University of California, Irvine, Irvine, California
| | - Weiping Wang
- Peripheral Nerve Research Laboratory, Department of Orthopaedic Surgery, University of California, Irvine, Irvine, California
| | - Ranjan Gupta
- Peripheral Nerve Research Laboratory, Department of Orthopaedic Surgery, University of California, Irvine, Irvine, California
| |
Collapse
|
8
|
Otani Y, Yermakov LM, Dupree JL, Susuki K. Chronic peripheral nerve compression disrupts paranodal axoglial junctions. Muscle Nerve 2016; 55:544-554. [PMID: 27463510 DOI: 10.1002/mus.25273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/13/2016] [Accepted: 07/26/2016] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Peripheral nerves are often exposed to mechanical stress leading to compression neuropathies. The pathophysiology underlying nerve dysfunction by chronic compression is largely unknown. METHODS We analyzed molecular organization and fine structures at and near nodes of Ranvier in a compression neuropathy model in which a silastic tube was placed around the mouse sciatic nerve. RESULTS Immunofluorescence study showed that clusters of cell adhesion complex forming paranodal axoglial junctions were dispersed and overlapped frequently with juxtaparanodal components. These paranodal changes occurred without internodal myelin damage. The distribution and pattern of paranodal disruption suggests that these changes are the direct result of mechanical stress. Electron microscopy confirmed loss of paranodal axoglial junctions. CONCLUSIONS Our data show that chronic nerve compression disrupts paranodal junctions and axonal domains required for proper peripheral nerve function. These results provide important clues toward better understanding of the pathophysiology underlying nerve dysfunction in compression neuropathies. Muscle Nerve 55: 544-554, 2017.
Collapse
Affiliation(s)
- Yoshinori Otani
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio, 45435, USA
| | - Leonid M Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio, 45435, USA
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio, 45435, USA
| |
Collapse
|
9
|
Desert hedgehog is a mediator of demyelination in compression neuropathies. Exp Neurol 2015; 271:84-94. [PMID: 25936873 DOI: 10.1016/j.expneurol.2015.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022]
Abstract
The secreted protein desert hedgehog (dhh) controls the formation of the nerve perineurium during development and is a key component of Schwann cells that ensures peripheral nerve survival. We postulated that dhh may play a critical role in maintaining myelination and investigated its role in demyelination-induced compression neuropathies by using a post-natal model of a chronic nerve injury in wildtype and dhh(-/-) mice. We evaluated demyelination using electrophysiological, morphological, and molecular approaches. dhh transcripts and protein are down-regulated early after injury in wild-type mice, suggesting an intimate relationship between the hedgehog pathway and demyelination. In dhh(-/-) mice, nerve injury induced more prominent and severe demyelination relative to their wild-type counterparts, suggesting a protective role of dhh. Alterations in nerve fiber characteristics included significant decreases in nerve conduction velocity, increased myelin debris, and substantial decreases in internodal length. Furthermore, in vitro studies showed that dhh blockade via either adenovirus-mediated (shRNA) or pharmacological inhibition both resulted in severe demyelination, which could be rescued by exogenous Dhh. Exogenous Dhh was protective against this demyelination and maintained myelination at baseline levels in a custom in vitro bioreactor to applied biophysical forces to myelinated DRG/Schwann cell co-cultures. Together, these results demonstrate a pivotal role for dhh in maintaining myelination. Furthermore, dhh signaling reveals a potential target for therapeutic intervention to prevent and treat demyelination of peripheral nerves in compression neuropathies.
Collapse
|
10
|
Schmid AB, Bland JDP, Bhat MA, Bennett DLH. The relationship of nerve fibre pathology to sensory function in entrapment neuropathy. ACTA ACUST UNITED AC 2014; 137:3186-99. [PMID: 25348629 PMCID: PMC4240296 DOI: 10.1093/brain/awu288] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The impact of peripheral entrapment neuropathies on target innervation remains unknown. Using quantitative sensory testing, neurophysiology and skin biopsies, Schmid et al. demonstrate that carpal tunnel syndrome affects large fibres and their nodal complexes, but is also associated with a reduction in the number and functioning of small sensory axons. Surprisingly little is known about the impact of entrapment neuropathy on target innervation and the relationship of nerve fibre pathology to sensory symptoms and signs. Carpal tunnel syndrome is the most common entrapment neuropathy; the aim of this study was to investigate its effect on the morphology of small unmyelinated as well as myelinated sensory axons and relate such changes to somatosensory function and clinical symptoms. Thirty patients with a clinical and electrophysiological diagnosis of carpal tunnel syndrome [17 females, mean age (standard deviation) 56.4 (15.3)] and 26 age and gender matched healthy volunteers [18 females, mean age (standard deviation) 51.0 (17.3)] participated in the study. Small and large fibre function was examined with quantitative sensory testing in the median nerve territory of the hand. Vibration and mechanical detection thresholds were significantly elevated in patients with carpal tunnel syndrome (P < 0.007) confirming large fibre dysfunction and patients also presented with increased thermal detection thresholds (P < 0.0001) indicative of C and Aδ-fibre dysfunction. Mechanical and thermal pain thresholds were comparable between groups (P > 0.13). A skin biopsy was taken from a median nerve innervated area of the proximal phalanx of the index finger. Immunohistochemical staining for protein gene product 9.5 and myelin basic protein was used to evaluate morphological features of unmyelinated and myelinated axons. Evaluation of intraepidermal nerve fibre density showed a striking loss in patients (P < 0.0001) confirming a significant compromise of small fibres. The extent of Meissner corpuscles and dermal nerve bundles were comparable between groups (P > 0.07). However, patients displayed a significant increase in the percentage of elongated nodes (P < 0.0001), with altered architecture of voltage-gated sodium channel distribution. Whereas neither neurophysiology nor quantitative sensory testing correlated with patients’ symptoms or function deficits, the presence of elongated nodes was inversely correlated with a number of functional and symptom related scores (P < 0.023). Our findings suggest that carpal tunnel syndrome does not exclusively affect large fibres but is associated with loss of function in modalities mediated by both unmyelinated and myelinated sensory axons. We also document for the first time that entrapment neuropathies lead to a clear reduction in intraepidermal nerve fibre density, which was independent of electrodiagnostic test severity. The presence of elongated nodes in the target tissue further suggests that entrapment neuropathies affect nodal structure/myelin well beyond the focal compression site. Interestingly, nodal lengthening may be an adaptive phenomenon as it inversely correlates with symptom severity.
Collapse
Affiliation(s)
- Annina B Schmid
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Headington, UK School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jeremy D P Bland
- Department of Clinical Neurophysiology, Kent and Canterbury Hospital, CT1 3NG, Canterbury Kent, UK
| | - Manzoor A Bhat
- Department of Physiology, Centre for Biomedical Neuroscience, School of Medicine, University of Texas Health Science Centre, San Antonio, TX, USA
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU, Headington, UK
| |
Collapse
|
11
|
Jung J, Hahn P, Choi B, Mozaffar T, Gupta R. Early Surgical Decompression Restores Neurovascular Blood Flow and Ischemic Parameters in an in Vivo Animal Model of Nerve Compression Injury. J Bone Joint Surg Am 2014; 96:897-906. [PMID: 24897737 PMCID: PMC4049242 DOI: 10.2106/jbjs.m.01116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Chronic nerve compression neuropathies result in decreased blood flow at the site of compression. Surgical decompression of the nerve often has variable postoperative results. The current study examines whether the timing of surgical intervention is an important variable in reversing the compression-induced ischemia and associated changes in biochemical markers. METHODS An established model of chronic nerve compression injury was created in 100 C57BL/6 mice, and serial electrophysiological examinations were used to confirm the creation of a chronic nerve compression injury. Laser speckle imaging was used to measure neural blood flow. Nerves in the animals that did not undergo decompression were harvested at two, four, and six weeks after injury and analyzed for hypoxia-inducible factor 1α (HIF1α), catalase, superoxide dismutase (SOD), and matrix metalloproteinases (MMPs) 2 and 9. Surgical decompression in other animals was performed at either an early (two-week) or late (six-week) time point after injury, with specimens harvested at multiple time points after decompression. One-way analysis of variance with Bonferroni correction was performed. RESULTS Chronic nerve compression injury initially induced hyperemia (1.37 ± 0.50 times that in the contralateral, uninjured nerve) followed by a decline in neural blood flow by four weeks (0.66 ± 0.14, p = 0.0313). In parallel, HIF1α, catalase, and SOD were elevated early after compression, whereas extracellular matrix-altering proteins were elevated later in the disease. Although early decompression yielded a return of blood flow to a hyperemic state (1.35 ± 0.16, p = 0.0057), late decompression did not result in reversal of the abnormal neurovascular flow. With late decompression, an MMP9-mediated structural alteration of the extracellular matrix was seen, producing irreversible changes in blood flow parameters. Although nerve conduction velocity measurements returned to normal two weeks after decompression irrespective of the timing of the surgical intervention, distal latency returned to normal only after early decompression (0.97 ± 0.06 msec compared with 1.22 ± 0.06 msec for late decompression, p = 0.009). CONCLUSIONS Chronic nerve compression injuries decreased neurovascular flow and induced ischemia by upregulating HIF1α, catalase, and MMP9. Early surgical intervention offered better return to normal electrophysiological parameters compared with late intervention. CLINICAL RELEVANCE These data present a clinical correlate to the variable functional outcomes seen following surgical release of chronic nerve compression injuries and provide early support for using distal latency as a predictor of outcomes following surgical release.
Collapse
Affiliation(s)
- James Jung
- Department of Orthopaedic Surgery, University of California, 2226 Gillespie Neuroscience Research Facility, Irvine, CA 92697. E-mail address for R. Gupta:
| | - Peter Hahn
- Department of Orthopaedic Surgery, University of California, 2226 Gillespie Neuroscience Research Facility, Irvine, CA 92697. E-mail address for R. Gupta:
| | - Bernard Choi
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
| | - Tahseen Mozaffar
- Department of Orthopaedic Surgery, University of California, 2226 Gillespie Neuroscience Research Facility, Irvine, CA 92697. E-mail address for R. Gupta:
| | - Ranjan Gupta
- Department of Orthopaedic Surgery, University of California, 2226 Gillespie Neuroscience Research Facility, Irvine, CA 92697. E-mail address for R. Gupta:
| |
Collapse
|
12
|
Local and remote immune-mediated inflammation after mild peripheral nerve compression in rats. J Neuropathol Exp Neurol 2013; 72:662-80. [PMID: 23771220 DOI: 10.1097/nen.0b013e318298de5b] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
After experimental nerve injuries that extensively disrupt axons, such as chronic constriction injury, immune cells invade the nerve, related dorsal root ganglia (DRGs), and spinal cord, leading to hyperexcitability, raised sensitivity, and pain. Entrapment neuropathies, such as carpal tunnel syndrome, involve minimal axon damage, but patients often report widespread symptoms. To understand the underlying pathology, a tube was placed around the sciatic nerve in 8-week-old rats, leading to progressive mild compression as the animals grew. Immunofluorescence was used to examine myelin and axonal integrity, glia, macrophages, and T lymphocytes in the nerve, L5 DRGs, and spinal cord after 12 weeks. Tubes that did not constrict the nerve when applied caused extensive and ongoing loss of myelin, together with compromise of small-, but not large-, diameter axons. Macrophages and T lymphocytes infiltrated the nerve and DRGs. Activated glia proliferated in DRGs but not in spinal cord. Histologic findings were supported by clinical hyperalgesia to blunt pressure and cold allodynia. Tubes that did not compress the nerve induced only minor local inflammation. Thus, progressive mild nerve compression resulted in chronic local and remote immune-mediated inflammation depending on the degree of compression. Such neuroinflammation may explain the widespread symptoms in patients with entrapment neuropathies.
Collapse
|
13
|
Mathew A, Pakan JMP, Collin EC, Wang W, McDermott KW, Fitzgerald U, Reynolds R, Pandit AS. An ex-vivo multiple sclerosis model of inflammatory demyelination using hyperbranched polymer. Biomaterials 2013; 34:5872-82. [PMID: 23660252 DOI: 10.1016/j.biomaterials.2013.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/04/2013] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is characterized by the presence of inflammatory demyelinating foci throughout the brain and spinal cord, accompanied by axonal and neuronal damage. Although inflammatory processes are thought to underlie the pathological changes, the individual mediators of this damage are unclear. In order to study the role of pro-inflammatory cytokines in demyelination in the central nervous system, we have utilized a hyperbranched poly(2-dimethyl-aminoethylmethacrylate) based non-viral gene transfection system to establish an inflammatory demyelinating model of MS in an ex-vivo environment. The synthesized non-viral gene transfection system was optimized for efficient transfection with minimal cytotoxicity. Organotypic brain slices were then successfully transfected with the TNF or IFNγ genes. TNF and IFNγ expression and release in cerebellar slices via non-viral gene delivery approach resulted in inflammation mediated myelin loss, thus making it a promising ex-vivo approach for studying the underlying mechanisms of demyelination in myelin-related diseases such as MS.
Collapse
Affiliation(s)
- Asha Mathew
- Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gupta R, Mozaffar T. Reply. Muscle Nerve 2012. [DOI: 10.1002/mus.23457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|