1
|
Jaikumar R, Chowdhury SR, Bharali L, Gupta R, Sharma S. Floppy Infant with Tongue Fasciculations: Not Always Spinal Muscular Atrophy. Indian J Pediatr 2024; 91:1202. [PMID: 39023705 DOI: 10.1007/s12098-024-05207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Rohitha Jaikumar
- Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Sayoni Roy Chowdhury
- Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Leena Bharali
- Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Richa Gupta
- Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Suvasini Sharma
- Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India.
| |
Collapse
|
2
|
Sala-Gaston J, Pérez-Villegas EM, Armengol JA, Rawlins LE, Baple EL, Crosby AH, Ventura F, Rosa JL. Autophagy dysregulation via the USP20-ULK1 axis in the HERC2-related neurodevelopmental disorder. Cell Death Discov 2024; 10:163. [PMID: 38570483 PMCID: PMC10991529 DOI: 10.1038/s41420-024-01931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
Sequence variants in the HERC2 gene are associated with a significant reduction in HERC2 protein levels and cause a neurodevelopmental disorder known as the HERC2-related disorder, which shares clinical features with Angelman syndrome, including global developmental delay, intellectual disability, autism, and movement disorders. Remarkably, the HERC2 gene is commonly deleted in individuals with Angelman syndrome, suggesting a potential contribution of HERC2 to the pathophysiology of this disease. Given the known critical role of autophagy in brain development and its implication in neurodevelopmental diseases, we undertook different experimental approaches to monitor autophagy in fibroblasts derived from individuals affected by the HERC2-related disorder. Our findings reveal alterations in the levels of the autophagy-related protein LC3. Furthermore, experiments with lysosomal inhibitors provide confirmation of an upregulation of the autophagy pathway in these patient-derived cells. Mechanistically, we corroborate an interaction between HERC2 and the deubiquitylating enzyme USP20; and demonstrate that HERC2 deficiency leads to increased USP20 protein levels. Notably, USP20 upregulation correlates with enhanced stability of the autophagy initiating kinase ULK1, highlighting the role of HERC2 as an autophagy regulator factor through the USP20-ULK1 axis. Moreover, we show that p38 acts as a modulator of this pathway, since p38 activation disrupts HERC2-USP20 interaction, leading to increased USP20 and LC3-II protein levels. Together, these findings uncover a previously unknown role for HERC2 in autophagy regulation and provide insights into the pathomolecular mechanisms underlying the HERC2-related disorder and Angelman syndrome.
Collapse
Affiliation(s)
- Joan Sala-Gaston
- Department of Physiological Sciences, University of Barcelona (UB), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Eva M Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013, Seville, Spain
| | - José A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, 41013, Seville, Spain
| | - Lettie E Rawlins
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Emma L Baple
- RILD Wellcome Wolfson Medical Research Centre, RD&E (Wonford) NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Andrew H Crosby
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Exeter, UK
| | - Francesc Ventura
- Department of Physiological Sciences, University of Barcelona (UB), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Department of Physiological Sciences, University of Barcelona (UB), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
3
|
Park CY, Jang JH, Song IH, Kim JY, Doh KO, Lee TJ. Suppression of TBCK enhances TRAIL-mediated apoptosis by causing the inactivation of the akt signaling pathway in human renal carcinoma Caki-1 cells. Genes Genomics 2023; 45:1357-1365. [PMID: 37725269 DOI: 10.1007/s13258-023-01453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND TBC1 domain-containing kinase (TBCK) protein functions as a growth suppressor in certain cell types and as a tumor promoter in others. Although TBCK knockdown increases the responsiveness of cancer cells to anticancer drugs, the detailed mechanisms by which TBCK knockdown increases susceptibility to anticancer drugs remain unknown. OBJECTIVE This study analyzed the role of TBCK in sensitivities to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and doxorubicin in human renal cancer cells. METHODS Flow cytometry was employed to evaluate the extent of apoptosis. Western blotting, transient transfection, and lentiviral infection techniques were conducted to investigate the impact of TBCK on apoptosis-related protein expression and mitogen-activated protein kinase (MAPK). RESULTS TBCK knockdown in renal cancer cells inhibits ERK and Akt signaling pathways and increases TRAIL and doxorubicin sensitivity. In TBCK-knockdown Caki-1 cells, ERK and Akt phosphorylation was suppressed compared to control cell lines, and TRAIL and doxorubicin sensitivities were increased in these cells. In addition, the phosphorylation of PDK1 was suppressed in TBCK-suppressed cells, indicating that TBCK may be involved in the PDK1 and Akt signaling pathways. The introduction of dominantly active Akt into TBCK-suppressed cells restored their sensitivity to TRAIL. In addition, TBCK downregulation enhanced TRAIL sensitivity in different renal cancer cell lines. CONCLUSIONS These data suggest that TBCK could potentially have a crucial function in influencing the effects of anti-cancer drugs including TRAIL by modulating the signaling pathway involving Akt and PDK1 in human renal cancer cells.
Collapse
Affiliation(s)
- Cho-Young Park
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-Gu, Daegu, 705- 717, Korea
| | - Ji-Hoon Jang
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-Gu, Daegu, 705- 717, Korea
| | - In-Hwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-Gu, Daegu, 705- 717, Korea
| | - Joo-Young Kim
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-Gu, Daegu, 705- 717, Korea
| | - Kyung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-Gu, Daegu, 705-717, Korea
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-Gu, Daegu, 705- 717, Korea.
| |
Collapse
|
4
|
Nair D, Diaz-Rosado A, Varella-Branco E, Ramos I, Black A, Angireddy R, Park J, Murali S, Yoon A, Ciesielski B, O’Brien WT, Passos-Bueno MR, Bhoj E. Heterozygous variants in TBCK cause a mild neurologic syndrome in humans and mice. Am J Med Genet A 2023; 191:2508-2517. [PMID: 37353954 PMCID: PMC10524953 DOI: 10.1002/ajmg.a.63320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
TBCK-related encephalopathy is a rare pediatric neurodegenerative disorder caused by biallelic loss-of-function variants in the TBCK gene. After receiving anecdotal reports of neurologic phenotypes in both human and mouse TBCK heterozygotes, we quantified if TBCK haploinsufficiency causes a phenotype in mice and humans. Using the tbck+/- mouse model, we performed a battery of behavioral assays and mTOR pathway analysis to investigate potential alterations in neurophysiology. We conducted as well a phenome-wide association study (PheWAS) analysis in a large adult biobank to determine the presence of potential phenotypes associated to this variant. The tbck+/- mouse model demonstrates a reduction of exploratory behavior in animals with significant sex and genotype interactions. The concurrent PheWAS analysis of 10,900 unrelated individuals showed that patients with one copy of a TBCK loss-of-function allele had a significantly higher rate of acquired toe and foot deformities, likely indicative of a mild peripheral neuropathy phenotype. This study presents an example of what may be the underappreciated occurrence of mild neurogenic symptoms in heterozygote individuals of recessive neurogenetic syndromes.
Collapse
Affiliation(s)
- Divya Nair
- Department of Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Abdias Diaz-Rosado
- Department of Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elisa Varella-Branco
- Centro de Estudos do Genoma Humano e Células-Tronco, Universidade de São Paulo, São Paulo, Brazil
| | - Igor Ramos
- Centro de Estudos do Genoma Humano e Células-Tronco, Universidade de São Paulo, São Paulo, Brazil
| | - Aaron Black
- Department of Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Rajesh Angireddy
- Department of Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Joseph Park
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Svathi Murali
- Department of Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Department of Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Yoon
- Department of Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Brianna Ciesielski
- ITMAT, University of Pennsylvania, School of Medicine, Philadelphia, PA, 19104 USA
| | - W. Timothy O’Brien
- ITMAT, University of Pennsylvania, School of Medicine, Philadelphia, PA, 19104 USA
| | | | - Elizabeth Bhoj
- Department of Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| |
Collapse
|
5
|
Durham EL, Angireddy R, Black A, Melendez-Perez A, Smith S, Gonzalez EM, Navarro KG, Díaz A, Bhoj EJK, Katsura KA. TBCK syndrome: a rare multi-organ neurodegenerative disease. Trends Mol Med 2023; 29:783-785. [PMID: 37455236 PMCID: PMC10868401 DOI: 10.1016/j.molmed.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
TBCK syndrome is an autosomal recessive disorder primarily characterized by global developmental delay, hypotonia, abnormal magnetic resonance imaging (MRI), and distinctive craniofacial phenotypes. High variability is observed among affected individuals and their corresponding variants, making clinical diagnosis challenging. Here, we discuss recent breakthroughs in clinical considerations, TBCK function, and therapeutic development.
Collapse
Affiliation(s)
- Emily L Durham
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| | - Rajesh Angireddy
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| | - Aaron Black
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| | - Ashley Melendez-Perez
- Division of Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sarina Smith
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| | - Elizabeth M Gonzalez
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA; Division of Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen G Navarro
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA
| | - Abdias Díaz
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA; Division of Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth J K Bhoj
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA; Division of Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Kaitlin A Katsura
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, PA, USA; Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Schuhmacher JS, Tom Dieck S, Christoforidis S, Landerer C, Davila Gallesio J, Hersemann L, Seifert S, Schäfer R, Giner A, Toth-Petroczy A, Kalaidzidis Y, Bohnsack KE, Bohnsack MT, Schuman EM, Zerial M. The Rab5 effector FERRY links early endosomes with mRNA localization. Mol Cell 2023; 83:1839-1855.e13. [PMID: 37267905 DOI: 10.1016/j.molcel.2023.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/06/2022] [Accepted: 05/08/2023] [Indexed: 06/04/2023]
Abstract
Localized translation is vital to polarized cells and requires precise and robust distribution of different mRNAs and ribosomes across the cell. However, the underlying molecular mechanisms are poorly understood and important players are lacking. Here, we discovered a Rab5 effector, the five-subunit endosomal Rab5 and RNA/ribosome intermediary (FERRY) complex, that recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction. FERRY displays preferential binding to certain groups of transcripts, including mRNAs encoding mitochondrial proteins. Deletion of FERRY subunits reduces the endosomal localization of transcripts in cells and has a significant impact on mRNA levels. Clinical studies show that genetic disruption of FERRY causes severe brain damage. We found that, in neurons, FERRY co-localizes with mRNA on early endosomes, and mRNA loaded FERRY-positive endosomes are in close proximity of mitochondria. FERRY thus transforms endosomes into mRNA carriers and plays a key role in regulating mRNA distribution and transport.
Collapse
Affiliation(s)
- Jan S Schuhmacher
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Susanne Tom Dieck
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Savvas Christoforidis
- Biomedical Research Institute, Foundation for Research and Technology, 45110 Ioannina, Greece; Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ramona Schäfer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Angelika Giner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Göttingen Centre for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, 60438 Frankfurt am Main, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
7
|
Chen W, Zhang J, Zhang Y, Zhang J, Li W, Sha L, Xia Y, Chen L. Pharmacological modulation of autophagy for epilepsy therapy: opportunities and obstacles. Drug Discov Today 2023; 28:103600. [PMID: 37119963 DOI: 10.1016/j.drudis.2023.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Epilepsy (EP) is a long-term neurological disorder characterized by neuroinflammatory responses, neuronal apoptosis, imbalance between excitatory and inhibitory neurotransmitters, and oxidative stress in the brain. Autophagy is a process of cellular self-regulation to maintain normal physiological functions. Emerging evidence suggests that dysfunctional autophagy pathways in neurons are a potential mechanism underlying EP pathogenesis. In this review, we discuss current evidence and molecular mechanisms of autophagy dysregulation in EP and the probable function of autophagy in epileptogenesis. Moreover, we review the autophagy modulators reported for the treatment of EP models, and discuss the obstacles to, and opportunities for, the potential therapeutic applications of novel autophagy modulators as EP therapies. Teaser: Defective autophagy affects the onset and progression of epilepsy, and many anti-epileptic drugs have autophagy-modulating effects.
Collapse
Affiliation(s)
- Wenqing Chen
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiwen Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanling Li
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Leihao Sha
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Xia
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Joint Research Institution of Altitude Health and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Sabanathan S, Gulhane D, Mankad K, Davison J, Ong MT, Phadke R, Robinson R, Spiller M, Wakeling E, Ramdas S, Brady AF, Balasubramanian M, Munot P. Expanding the phenotype of children presenting with hypoventilation with biallelic TBCK pathogenic variants and literature review. Neuromuscul Disord 2023; 33:50-57. [PMID: 36522252 DOI: 10.1016/j.nmd.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Individuals with biallelic TBCK pathogenic variants present in infancy with distinctive facial features, profound hypotonia, severe intellectual impairment and epilepsy. Although rare, it may mimic other neurogenetic disorders leading to extensive investigations. Improved understanding of the clinical phenotype can support early monitoring of complications due to respiratory insufficiency. We present six individuals who were found to have pathogenic biallelic TBCK variants. The clinico-radiological and diagnostic records were reviewed. Five individuals were diagnosed with hypoventilation, requiring respiratory support, highlighting the need for early respiratory surveillance. Characteristic brain imaging in our cohort included periventricular leukomalacia-like changes. We recommend screening for TBCK in hypotonic children with periventricular leukomalacia-like changes, particularly in the absence of prematurity.
Collapse
Affiliation(s)
| | - Deepti Gulhane
- Department of Neurology, Great Ormond Street Hospital NHS Trust, London, UK
| | - Kshitij Mankad
- Department of neuroradiology, Great Ormond Street Hospital NHS Trust, London, UK
| | - James Davison
- Department of Metabolic Medicine, Great Ormond Street Hospital NHS Trust, London, UK
| | - Min Tsui Ong
- Department of Neurology, Sheffield Children's Hospital NHS Foundation Trust, London, UK
| | - Rahul Phadke
- Department of Neuropathology, Institute of Neurology, Queen Square, London, UK
| | - Robert Robinson
- Department of Neurology, Great Ormond Street Hospital NHS Trust, London, UK
| | - Michael Spiller
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Emma Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital NHS Trust, London, UK
| | - Sithara Ramdas
- MDUK neuromuscular centre, Department of Paediatrics, University of Oxford, UK; Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Angela F Brady
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Middlesex, HA1 3UJ, UK
| | - Meena Balasubramanian
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK; Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK.
| | - Pinki Munot
- Department of Neurology, Great Ormond Street Hospital NHS Trust, London, UK.
| |
Collapse
|
9
|
Zhu Y, Liu Z, Guo Y, Li S, Qu Y, Dai L, Chen Y, Ning W, Zhang H, Ma L. Whole-genome sequencing of extrachromosomal circular DNA of cerebrospinal fluid of medulloblastoma. Front Oncol 2022; 12:934159. [PMID: 36452490 PMCID: PMC9703567 DOI: 10.3389/fonc.2022.934159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/12/2022] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Medulloblastoma (MB) is a malignant tumor associated with a poor prognosis in part due to a lack of effective detection methods. Extrachromosomal circular DNA (eccDNA) has been associated with multiple tumors. Nonetheless, little is currently known on eccDNA in MB. METHODS Genomic features of eccDNAs were identified in MB tissues and matched cerebrospinal fluid (CSF) and compared with corresponding normal samples using Circle map. The nucleotides on both sides of the eccDNAs' breakpoint were analyzed to understand the mechanisms of eccDNA formation. Bioinformatics analysis combined with the Gene Expression Omnibus (GEO) database identified features of eccDNA-related genes in MB. Lasso Cox regression model, univariate and multivariate Cox regression analysis, time-dependent ROC, and Kaplan-Meier curve were used to assess the potential diagnostic and prognostic value of the hub genes. RESULTS EccDNA was profiled in matched tumor and CSF samples from MB patients, and control, eccDNA-related genes enriched in MB were identified. The distribution of eccDNAs in the genome was closely related to gene density and the mechanism of eccDNA formation was evaluated. EccDNAs in CSF exhibited similar distribution with matched MB tissues but were differentially expressed between tumor and normal. Ten hub genes prominent in both the eccDNA dataset and the GEO database were selected to classify MB patients to either high- or low-risk groups, and a prognostic nomogram was thus established. CONCLUSIONS This study provides preliminary evidence of the characteristics and formation mechanism of eccDNAs in MB and CSF. Importantly, eccDNA-associated hub genes in CSF could be used as diagnostic and prognostic biomarkers for MB.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Zhihui Liu
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuduo Guo
- Chinese Academy of Sciences (CAS) Key Laboratory of Infection and Immunity, Institute of biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shenglun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lin Dai
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lixin Ma
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Molecular Mechanism and Regulation of Autophagy and Its Potential Role in Epilepsy. Cells 2022; 11:cells11172621. [PMID: 36078029 PMCID: PMC9455075 DOI: 10.3390/cells11172621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an evolutionally conserved degradation mechanism for maintaining cell homeostasis whereby cytoplasmic components are wrapped in autophagosomes and subsequently delivered to lysosomes for degradation. This process requires the concerted actions of multiple autophagy-related proteins and accessory regulators. In neurons, autophagy is dynamically regulated in different compartments including soma, axons, and dendrites. It determines the turnover of selected materials in a spatiotemporal control manner, which facilitates the formation of specialized neuronal functions. It is not surprising, therefore, that dysfunctional autophagy occurs in epilepsy, mainly caused by an imbalance between excitation and inhibition in the brain. In recent years, much attention has been focused on how autophagy may cause the development of epilepsy. In this article, we overview the historical landmarks and distinct types of autophagy, recent progress in the core machinery and regulation of autophagy, and biological roles of autophagy in homeostatic maintenance of neuronal structures and functions, with a particular focus on synaptic plasticity. We also discuss the relevance of autophagy mechanisms to the pathophysiology of epileptogenesis.
Collapse
|
11
|
Reddy N, Doyle M, Hanagandi P, Taranath A, Dahmoush H, Krishnan P, Oztekin O, Boltshauser E, Shroff M, Mankad K. Neuroradiological Mimics of Periventricular Leukomalacia. J Child Neurol 2022; 37:151-167. [PMID: 34937403 DOI: 10.1177/08830738211026052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM Periventricular leukomalacia (PVL) is a term reserved to describe white matter injury in the premature brain. In this review article, the authors highlight the common and rare pathologies mimicking the chronic stage of PVL and propose practical clinico-radiological criteria that would aid in diagnosis and management. METHODS AND RESULTS The authors first describe the typical brain MRI (magnetic resonance imaging) features of PVL. Based on their clinical presentation, pathologic entities and their neuroimaging findings were clustered into distinct categories. Three clinical subgroups were identified: healthy children, children with stable/nonprogressive neurological disorder, and those with progressive neurological disorder. The neuroradiological discriminators are described in each subgroup with relevant differential diagnoses. The mimics were broadly classified into normal variants, acquired, and inherited disorders. CONCLUSIONS The term "PVL" should be used appropriately as it reflects its pathomechanism. The phrase "white matter injury of prematurity" or "brain injury of prematurity" is more specific. Discrepancies in imaging and clinical presentation must be tread with caution and warrant further investigations to exclude other possibilities.
Collapse
Affiliation(s)
- Nihaal Reddy
- Rainbow Children's Hospital and Tenet Diagnostics, Hyderabad, India
| | - Mary Doyle
- Department of Paediatric Neurology, Great Ormond Street Hospital, London, UK
| | - Prasad Hanagandi
- Department of Neuroradiology, King Abdulaziz Medical City, Riyadh Ministry of National Guard Health Affairs, Saudi Arabia
| | - Ajay Taranath
- Department of Radiology, Women's and Children's Hospital, Adelaide, Australia
| | - Hisham Dahmoush
- Department of Radiology, Lucile Packard Children's Hospital, Stanford, CA, USA
| | - Pradeep Krishnan
- Department of Pediatric Neuroradiology, The Hospital for Sick Children, Toronto, Canada
| | - Ozgur Oztekin
- Tepecik Research and Education Hospital, Health Science University, Izmir, Turkey
| | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital, Zurich, Steinwiesstrasse, Switzerland
| | - Manohar Shroff
- Department of Pediatric Neuroradiology, The Hospital for Sick Children, Toronto, Canada
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
12
|
Moreira DDP, Suzuki AM, Silva ALTE, Varella-Branco E, Meneghetti MCZ, Kobayashi GS, Fogo M, Ferrari MDFR, Cardoso RR, Lourenço NCV, Griesi-Oliveira K, Zachi EC, Bertola DR, Weinmann KDS, de Lima MA, Nader HB, Sertié AL, Passos-Bueno MR. Neuroprogenitor Cells From Patients With TBCK Encephalopathy Suggest Deregulation of Early Secretory Vesicle Transport. Front Cell Neurosci 2022; 15:803302. [PMID: 35095425 PMCID: PMC8793280 DOI: 10.3389/fncel.2021.803302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Biallelic pathogenic variants in TBCK cause encephaloneuropathy, infantile hypotonia with psychomotor retardation, and characteristic facies 3 (IHPRF3). The molecular mechanisms underlying its neuronal phenotype are largely unexplored. In this study, we reported two sisters, who harbored biallelic variants in TBCK and met diagnostic criteria for IHPRF3. We provided evidence that TBCK may play an important role in the early secretory pathway in neuroprogenitor cells (iNPC) differentiated from induced pluripotent stem cells (iPSC). Lack of functional TBCK protein in iNPC is associated with impaired endoplasmic reticulum-to-Golgi vesicle transport and autophagosome biogenesis, as well as altered cell cycle progression and severe impairment in the capacity of migration. Alteration in these processes, which are crucial for neurogenesis, neuronal migration, and cytoarchitecture organization, may represent an important causative mechanism of both neurodevelopmental and neurodegenerative phenotypes observed in IHPRF3. Whether reduced mechanistic target of rapamycin (mTOR) signaling is secondary to impaired TBCK function over other secretory transport regulators still needs further investigation.
Collapse
Affiliation(s)
- Danielle de Paula Moreira
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Angela May Suzuki
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Elisa Varella-Branco
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Gerson Shigeru Kobayashi
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana Fogo
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ensino e Pesquisa Albert Einstein, Albert Einstein Hospital, São Paulo, Brazil
| | | | - Rafaela Regina Cardoso
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Naila Cristina Vilaça Lourenço
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Karina Griesi-Oliveira
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ensino e Pesquisa Albert Einstein, Albert Einstein Hospital, São Paulo, Brazil
| | - Elaine Cristina Zachi
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Débora Romeo Bertola
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto da Criança do Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Karina de Souza Weinmann
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo Andrade de Lima
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Helena Bonciani Nader
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andrea Laurato Sertié
- Instituto de Ensino e Pesquisa Albert Einstein, Albert Einstein Hospital, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Maria Rita Passos-Bueno,
| |
Collapse
|
13
|
Tintos-Hernández JA, Santana A, Keller KN, Ortiz-González XR. Lysosomal dysfunction impairs mitochondrial quality control and is associated with neurodegeneration in TBCK encephaloneuronopathy. Brain Commun 2021; 3:fcab215. [PMID: 34816123 PMCID: PMC8603245 DOI: 10.1093/braincomms/fcab215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/14/2022] Open
Abstract
Biallelic variants in the TBCK gene cause intellectual disability with remarkable clinical variability, ranging from static encephalopathy to progressive neurodegeneration (TBCK-Encephaloneuronopathy). The biological factors underlying variable disease penetrance remain unknown. Since previous studies had suggested aberrant autophagy, we tested whether mitophagy and mitochondrial function are altered in TBCK−/− fibroblasts derived from patients exhibiting variable clinical severity. Our data show significant accumulation of mitophagosomes, reduced mitochondrial respiratory capacity and mitochondrial DNA content, suggesting impaired mitochondrial quality control. Furthermore, the degree of mitochondrial dysfunction correlates with a neurodegenerative clinical course. Since mitophagy ultimately depends on lysosomal degradation, we also examined lysosomal function. Our data show that lysosomal proteolytic function is significantly reduced in TBCK−/− fibroblasts. Moreover, acidifying lysosomal nanoparticles rescue the mitochondrial respiratory defects in fibroblasts, suggesting impaired mitochondrial quality control secondary to lysosomal dysfunction. Our data provide insight into the disease mechanisms of TBCK Encephaloneuronopathy and the potential relevance of mitochondrial function as a biomarker beyond primary mitochondrial disorders. It also supports the benefit of lysosomal acidification strategies for disorders of impaired lysosomal degradation affecting mitochondrial quality control.
Collapse
Affiliation(s)
- Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adrian Santana
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kierstin N Keller
- Department of Genetics, Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Epilepsy Neurogenetics Initiative and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Miyamoto S, Kato M, Hiraide T, Shiohama T, Goto T, Hojo A, Ebata A, Suzuki M, Kobayashi K, Chong PF, Kira R, Matsushita HB, Ikeda H, Hoshino K, Matsufuji M, Moriyama N, Furuyama M, Yamamoto T, Nakashima M, Saitsu H. Comprehensive genetic analysis confers high diagnostic yield in 16 Japanese patients with corpus callosum anomalies. J Hum Genet 2021; 66:1061-1068. [PMID: 33958710 DOI: 10.1038/s10038-021-00932-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
Corpus callosum anomalies (CCA) is a common congenital brain anomaly with various etiologies. Although one of the most important etiologies is genetic factors, the genetic background of CCA is heterogenous and diverse types of variants are likely to be causative. In this study, we analyzed 16 Japanese patients with corpus callosum anomalies to delineate clinical features and the genetic background of CCAs. We observed the common phenotypes accompanied by CCAs: intellectual disability (100%), motor developmental delay (93.8%), seizures (60%), and facial dysmorphisms (50%). Brain magnetic resonance imaging showed colpocephaly (enlarged posterior horn of the lateral ventricles, 84.6%) and enlarged supracerebellar cistern (41.7%). Whole exome sequencing revealed genetic alterations in 9 of the 16 patients (56.3%), including 8 de novo alterations (2 copy number variants and variants in ARID1B, CDK8, HIVEP2, and TCF4) and a recessive variant of TBCK. De novo ARID1B variants were identified in three unrelated individuals, suggesting that ARID1B variants are major genetic causes of CCAs. A de novo TCF4 variant and somatic mosaic deletion at 18q21.31-qter encompassing TCF4 suggest an association of TCF4 abnormalities with CCAs. This study, which analyzes CCA patients usung whole exome sequencing, demonstrates that comprehensive genetic analysis would be useful for investigating various causal variants of CCAs.
Collapse
Affiliation(s)
- Sachiko Miyamoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Takuya Hiraide
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Graduated School of Medicine, Chiba University, Chiba, Japan
| | - Tomohide Goto
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Akira Hojo
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Akio Ebata
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Manabu Suzuki
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kozue Kobayashi
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Pin Fee Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | | | - Hiroko Ikeda
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Kyoko Hoshino
- Segawa Memorial Neurological Clinic for Children, Tokyo, Japan
| | - Mayumi Matsufuji
- Department of Pediatrics, Minami Kyushu National Hospital, Aira, Japan
| | - Nobuko Moriyama
- Department of Pediatrics, Hitachi, Ltd., Hitachinaka General Hospital, Hitachinaka, Japan
| | - Masayuki Furuyama
- Department of Pediatrics, Okitama Public General Hospital, Yamagata, Japan
| | - Tatsuya Yamamoto
- Department of Pediatrics, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
15
|
Abdelmoumen I, Jimenez S, Valencia I, Melvin J, Legido A, Diaz-Diaz MM, Griffith C, Massingham LJ, Yelton M, Rodríguez-Hernández J, Schnur RE, Walsh LE, Cristancho AG, Bergqvist CA, McWalter K, Mathieson I, Belbin GM, Kenny EE, Ortiz-Gonzalez XR, Schneider MC. Boricua Founder Variant in FRRS1L Causes Epileptic Encephalopathy With Hyperkinetic Movements. J Child Neurol 2021; 36:93-98. [PMID: 32928027 PMCID: PMC8496110 DOI: 10.1177/0883073820953001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To describe a founder mutation effect and the clinical phenotype of homozygous FRRS1L c.737_739delGAG (p.Gly246del) variant in 15 children of Puerto Rican (Boricua) ancestry presenting with early infantile epileptic encephalopathy (EIEE-37) with prominent movement disorder. BACKGROUND EIEE-37 is caused by biallelic loss of function variants in the FRRS1L gene, which is critical for AMPA-receptor function, resulting in intractable epilepsy and dyskinesia. METHODS A retrospective, multicenter chart review of patients sharing the same homozygous FRRS1L (p.Gly246del) pathogenic variant identified by clinical genetic testing. Clinical information was collected regarding neurodevelopmental outcomes, neuroimaging, electrographic features and clinical response to antiseizure medications. RESULTS Fifteen patients from 12 different families of Puerto Rican ancestry were homozygous for the FRRS1L (p.Gly246del) pathogenic variant, with ages ranging from 1 to 25 years. The onset of seizures was from 6 to 24 months. All had hypotonia, severe global developmental delay, and most had hyperkinetic involuntary movements. Developmental regression during the first year of life was common (86%). Electroencephalogram showed hypsarrhythmia in 66% (10/15), with many older children evolving into Lennox-Gastaut syndrome. Six patients demonstrated progressive volume loss and/or cerebellar atrophy on brain magnetic resonance imaging (MRI). CONCLUSIONS We describe the largest cohort to date of patients with epileptic encephalopathy. We estimate that 0.76% of unaffected individuals of Puerto Rican ancestry carry this pathogenic variant due to a founder effect. Children homozygous for the FRRS1L (p.Gly246del) Boricua variant exhibit a very homogenous phenotype of early developmental regression and epilepsy, starting with infantile spasms and evolving into Lennox-Gastaut syndrome with hyperkinetic movement disorder.
Collapse
Affiliation(s)
- Imane Abdelmoumen
- Section of Neurology, Department of Pediatrics, St. Christopher’s Hospital for Children Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sandra Jimenez
- Section of Neurology, Department of Pediatrics, St. Christopher’s Hospital for Children Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ignacio Valencia
- Section of Neurology, Department of Pediatrics, St. Christopher’s Hospital for Children Drexel University College of Medicine, Philadelphia, PA, USA
| | - Joseph Melvin
- Section of Neurology, Department of Pediatrics, St. Christopher’s Hospital for Children Drexel University College of Medicine, Philadelphia, PA, USA
| | - Agustin Legido
- Section of Neurology, Department of Pediatrics, St. Christopher’s Hospital for Children Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | | - Melissa Yelton
- Penn State Health Children’s Hospital, Clinical Genetics, Hershey, PA, USA
| | | | - Rhonda E. Schnur
- Division of Genetics, Cooper Medical School of Rowan University, Copper University Health Care, Camden, NJ, USA
| | - Laurence E. Walsh
- Indiana University School of Medicine, Neurology and Genetics, Indianapolis, IN, USA
| | - Ana G. Cristancho
- Department of Pediatrics, Division of Neurology, Epilepsy Neurogenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Neurology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Christina A. Bergqvist
- Department of Pediatrics, Division of Neurology, Epilepsy Neurogenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Neurology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | | | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gillian M. Belbin
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xilma R. Ortiz-Gonzalez
- Department of Pediatrics, Division of Neurology, Epilepsy Neurogenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Department of Neurology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C. Schneider
- Section of Neurology, Department of Pediatrics, St. Christopher’s Hospital for Children Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
16
|
Wu J, Lu G. Multiple functions of TBCK protein in neurodevelopment disorders and tumors. Oncol Lett 2021; 21:17. [PMID: 33240423 PMCID: PMC7681195 DOI: 10.3892/ol.2020.12278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
TBC1 domain containing kinase (TBCK) protein is composed of three conserved domains, including N-terminal Serine/Threonine kinase domain, central TBC domain and C-terminal rhodanese homology domain (RHOD). A total of 9 different transcripts (classified as long and short TBCK) generated by alternative splicing have been reported in different cell lines. Exogenous expression of long TBCK has been identified to function as a suppressor of cell growth in certain cell types. On the contrary, TBCK has also been reported to serve a tumor-promoting role in other cell lines, indicating that TBCK might function differentially, depending on the context in different cellular environments. Furthermore, deleterious homozygous or compound heterozygous mutations identified by whole-exome sequencing in the TBCK gene could ablate the function of TBCK, further impacting the mTOR signaling pathway and leading to neurogenetic disorders, such as hypotonia, global developmental delay, facial dysmorphic features and brain abnormalities. However, as a poorly explored protein, there are a lot of studies associated with the functions of TBCK that need to be performed in the future. The present review summarizes data regarding the structural features and potential roles of TBCK in developmental and neurological diseases and tumorigenesis. Future prospects of TBCK research lie in revealing numerous biological functions of TBCK.
Collapse
Affiliation(s)
- Jin Wu
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Guanting Lu
- Department of Pathology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| |
Collapse
|
17
|
Song J, Hu Y, Li W, Li H, Zheng H, Chen Y, Dong S, Liu L. Transcriptome analysis following enterovirus 71 and coxsackievirus A16 infection in respiratory epithelial cells. Arch Virol 2020; 165:2817-2828. [PMID: 32990841 PMCID: PMC7522011 DOI: 10.1007/s00705-020-04821-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/22/2020] [Indexed: 11/03/2022]
Abstract
Enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) are the major pathogens responsible for hand, foot and mouth disease (HFMD), but the mechanism by which these viruses cause disease remains unclear. In this study, we used transcriptome sequencing technology to investigate changes in the transcriptome profiles after infection with EV-A71 and CV-A16 in human bronchial epithelial (16HBE) cells. Using systematic bioinformatics analysis, we then searched for useful clues regarding the pathogenesis of HFMD. As a result, a total of 111 common differentially expressed genes were present in both EV-A71- and CV-A16-infected cells. A trend analysis of these 111 genes showed that 91 of them displayed the same trend in EV-A71 and CV-A16 infection, including 49 upregulated genes and 42 downregulated genes. These 91 genes were further used to conduct GO, pathway, and coexpression network analysis. It was discovered that enriched GO terms (such as histone acetylation and positive regulation of phosphorylation) and pathways (such as glycosylphosphatidylinositol (GPI)-anchor biosynthesis and DNA replication) might be closely associated with the pathogenic mechanism of these two viruses, and key genes (such as TBCK and GPC) might be involved in the progression of HFMD. Finally, we randomly selected 10 differentially expressed genes for qRT-PCR to validate the transcriptome sequencing data. The experimental qRT-PCR results were roughly in agreement with the results of transcriptome sequencing. Collectively, our results provide clues to the mechanism of pathogenesis of HFMD induced by EV-A71 and CV-A16.
Collapse
Affiliation(s)
- Jie Song
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650002, China
| | - Weiyu Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Hui Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Huiwen Zheng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Yanli Chen
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Shaozhong Dong
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China. .,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, 650118, China.
| |
Collapse
|
18
|
Saredi S, Cauley ES, Ruggieri A, Spivey TM, Ardissone A, Mora M, Moroni I, Manzini MC. Myopathic changes associated with psychomotor delay and seizures caused by a novel homozygous mutation in TBCK. Muscle Nerve 2020; 62:266-271. [PMID: 32363625 DOI: 10.1002/mus.26907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/16/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Biallelic mutations in TBC1-domain containing kinase (TBCK) lead to hypotonia, global developmental delay with severe cognitive and motor deficits, and variable presentation of dysmorphic facial features and brain malformations. It remains unclear whether hypotonia in these individuals is purely neurogenic, or also caused by progressive muscle disease. METHODS Whole exome sequencing was performed on a family diagnosed with nonspecific myopathic changes by means of histological analysis and immunohistochemistry of muscle biopsy samples. RESULTS A novel homozygous truncation in TBCK was found in two sisters diagnosed with muscle disease and severe psychomotor delay. TBCK was completely absent in these patients. CONCLUSIONS Our findings identify a novel early truncating variant in TBCK associated with a severe presentation and add muscle disease to the variability of phenotypes associated with TBCK mutations. Inconsistent genotype/phenotype correlation could be ascribed to the multiple roles of TBCK in intracellular signaling and endolysosomal function in different tissues.
Collapse
Affiliation(s)
- Simona Saredi
- Neuromuscular Disease and Immunology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Edmund S Cauley
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Alessandra Ruggieri
- Neuromuscular Disease and Immunology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy.,Biology and Genetic Division, Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| | - Tyler M Spivey
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Anna Ardissone
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Mora
- Neuromuscular Disease and Immunology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - M Chiara Manzini
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University, Washington, DC.,Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
19
|
Fassio A, Falace A, Esposito A, Aprile D, Guerrini R, Benfenati F. Emerging Role of the Autophagy/Lysosomal Degradative Pathway in Neurodevelopmental Disorders With Epilepsy. Front Cell Neurosci 2020; 14:39. [PMID: 32231521 PMCID: PMC7082311 DOI: 10.3389/fncel.2020.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/10/2020] [Indexed: 01/08/2023] Open
Abstract
Autophagy is a highly conserved degradative process that conveys dysfunctional proteins, lipids, and organelles to lysosomes for degradation. The post-mitotic nature, complex and highly polarized morphology, and high degree of specialization of neurons make an efficient autophagy essential for their homeostasis and survival. Dysfunctional autophagy occurs in aging and neurodegenerative diseases, and autophagy at synaptic sites seems to play a crucial role in neurodegeneration. Moreover, a role of autophagy is emerging for neural development, synaptogenesis, and the establishment of a correct connectivity. Thus, it is not surprising that defective autophagy has been demonstrated in a spectrum of neurodevelopmental disorders, often associated with early-onset epilepsy. Here, we discuss the multiple roles of autophagy in neurons and the recent experimental evidence linking neurodevelopmental disorders with epilepsy to genes coding for autophagic/lysosomal system-related proteins and envisage possible pathophysiological mechanisms ranging from synaptic dysfunction to neuronal death.
Collapse
Affiliation(s)
- Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Alessandro Esposito
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Davide Aprile
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy.,IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
20
|
Wang Y, Zhu LN, Ma XW, Yang F, Xu XL, Yang Y, Yang X, Peng W, Zhang WQ, Liang JY, Zhu WD, Jiang TJ, Zhang XL, Feng ZC. Gene-Focused Networks Underlying Phenotypic Convergence in a Systematically Phenotyped Cohort With Heterogeneous Intellectual Disability. Front Bioeng Biotechnol 2020; 8:45. [PMID: 32117926 PMCID: PMC7019181 DOI: 10.3389/fbioe.2020.00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
The broad spectrum of intellectual disability (ID) patients' clinical manifestations, the heterogeneity of ID genetic variation, and the diversity of the phenotypic variation represent major challenges for ID diagnosis. By exploiting a manually curated systematic phenotyping cohort of 3803 patients harboring ID, we identified 704 pathogenic genes, 3848 pathogenic sites, and 2075 standard phenotypes for underlying molecular perturbations and their phenotypic impact. We found the positive correlation between the number of phenotypes and that of patients that revealed their extreme heterogeneities, and the relative contribution of multiple determinants to the heterogeneity of ID phenotypes. Nevertheless, despite the extreme heterogeneity in phenotypes, the ID genes had a specific bias of mutation types, and the top 44 genes that ranked by the number of patients accounted for 39.9% of total patients. More interesting, enriched co-occurrent phenotypes and co-occurrent phenotype networks for each gene had the potential for prioritizing ID genes, further exhibited the convergences of ID phenotypes. Then we established a predictor called IDpred using machine learning methods for ID pathogenic genes prediction. Using10-fold cross-validation, our evaluation shows remarkable AUC values for IDpred (auc = 0.978), demonstrating the robustness and reliability of our tool. Besides, we built the most comprehensive database of ID phenotyped cohort to date: IDminer http://218.4.234.74:3100/IDminer/, which included the curated ID data and integrated IDpred tool for both clinical and experimental researchers. The IDminer serves as an important resource and user-friendly interface to help researchers investigate ID data, and provide important implications for the diagnosis and pathogenesis of developmental disorders of cognition.
Collapse
Affiliation(s)
- Yan Wang
- BaYi Children’s Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Li-Na Zhu
- BaYi Children’s Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Xiu-Wei Ma
- BaYi Children’s Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Fang Yang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Xi-Lin Xu
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Yao Yang
- BaYi Children’s Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Xiao Yang
- BaYi Children’s Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Wei Peng
- BaYi Children’s Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Wan-Qiao Zhang
- BaYi Children’s Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Jin-Yu Liang
- The Second People’s Hospital of Aohanqi, Inner Mongolia, China
| | - Wei-Dong Zhu
- The Second People’s Hospital of Aohanqi, Inner Mongolia, China
| | - Tai-Jiao Jiang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin-Lei Zhang
- Suzhou Geneworks Technology Co., Ltd., Suzhou, China
| | - Zhi-Chun Feng
- BaYi Children’s Hospital, The Seventh Medical Center of PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| |
Collapse
|
21
|
Teinert J, Behne R, Wimmer M, Ebrahimi-Fakhari D. Novel insights into the clinical and molecular spectrum of congenital disorders of autophagy. J Inherit Metab Dis 2020; 43:51-62. [PMID: 30854657 DOI: 10.1002/jimd.12084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022]
Abstract
Autophagy is a fundamental and conserved catabolic pathway that mediates the degradation of macromolecules and organelles in lysosomes. Autophagy is particularly important to postmitotic and metabolically active cells such as neurons. The complex architecture of neurons and their long axons pose additional challenges for efficient recycling of cargo. Not surprisingly autophagy is required for normal central nervous system development and function. Several single-gene disorders of the autophagy pathway have been discovered in recent years giving rise to a novel group of inborn errors of metabolism referred to as congenital disorders of autophagy. While these disorders are heterogeneous, they share several clinical and molecular characteristics including a prominent and progressive involvement of the central nervous system leading to brain malformations, developmental delay, intellectual disability, epilepsy, movement disorders, and cognitive decline. On brain magnetic resonance imaging a predominant involvement of the corpus callosum, the corticospinal tracts and the cerebellum are noted. A storage disease phenotype is present in some diseases, underscoring both clinical and molecular overlaps to lysosomal storage diseases. This review provides an update on the clinical, imaging, and genetic spectrum of congenital disorders of autophagy and highlights the importance of this pathway for neurometabolism and childhood-onset neurological diseases.
Collapse
Affiliation(s)
- Julian Teinert
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert Behne
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Miriam Wimmer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
TBCK Encephaloneuropathy With Abnormal Lysosomal Storage: Use of a Structural Variant Bioinformatics Pipeline on Whole-Genome Sequencing Data Unravels a 20-Year-Old Clinical Mystery. Pediatr Neurol 2019; 96:74-75. [PMID: 30898414 DOI: 10.1016/j.pediatrneurol.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 11/23/2022]
|
23
|
Beck-Wödl S, Harzer K, Sturm M, Buchert R, Rieß O, Mennel HD, Latta E, Pagenstecher A, Keber U. Homozygous TBC1 domain-containing kinase (TBCK) mutation causes a novel lysosomal storage disease - a new type of neuronal ceroid lipofuscinosis (CLN15)? Acta Neuropathol Commun 2018; 6:145. [PMID: 30591081 PMCID: PMC6307319 DOI: 10.1186/s40478-018-0646-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Homozygous mutation of TBC1 domain-containing kinase (TBCK) is the cause of a very recently defined severe childhood disorder, which is characterized by severe hypotonia, global developmental delay, intellectual disability, epilepsy, characteristic facies and premature death. The link between TBCK loss of function and symptoms in patients with TBCK deficiency disorder (TBCK-DD) remains elusive. Here we demonstrate for the first time the histopathological characteristics of TBCK deficiency consisting of 1) a widespread and massive accumulation of lipofuscin storage material in neurons of the central nervous system without notable neuronal degeneration, 2) storage deposits in few astrocytes, 3) carbohydrate-rich deposits in brain, spleen and liver and 4) vacuolated lymphocytes. Biochemical examinations ruled out more than 20 known lysosomal storage diseases. These investigations strikingly uncover TBCK-DD as a novel type of lysosomal storage disease which is characterized by different storage products rather than one specific type of accumulated material. Due to the clear predominance of intraneuronal lipofuscin storage material and the characteristic clinical presentation we propose to classify this disease as a new subtype of neuronal ceroid lipofuscinosis (CLN15). Our results and previous reports suggest an autophagosomal-lysosomal dysfunction caused by enhanced mTORC1-mediated autophagosome formation and reduced Rab-mediated autophagosome-lysosome fusion, thus disclosing potential novel targets for therapeutic approaches in TBCK-DD.
Collapse
|
24
|
Further delineation of TBCK - Infantile hypotonia with psychomotor retardation and characteristic facies type 3. Eur J Med Genet 2018; 62:273-277. [PMID: 30103036 DOI: 10.1016/j.ejmg.2018.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 01/19/2023]
Abstract
Deleterious homozygous or compound heterozygous mutations in the TBCK (TBC1-domain-containing kinase) gene (implicated in the MTOR pathway) produce profound hypotonia, global developmental delay, facial dysmorphic features, and brain abnormalities. The disorder has been named "infantile hypotonia with psychomotor retardation and characteristic facies-3" (IHPRF3). Here we present two sisters with a novel mutation in TBCK (NM_001163435.2: c.753dup; p.(Lys252*)) who have this ultrarare disorder. We have reviewed the literature on the 33 previously reported cases to provide a characterization of this emerging phenotype. Pathogenic mutations in TBCK have a predominant involvement of the Central Nervous System with a progressive pattern, leading to the conclusion where pathogenic mutations of the said gene lead to a progressive neurodegenerative disease. This report adds novel mutation and features to this complex phenotype. Further investigation is required to understand the pathogenesis of TBCK.
Collapse
|