1
|
Klitzman R, Bezborodko E, Chung WK, Appelbaum PS. Views of Genetic Testing for Autism Among Autism Self-Advocates: A Qualitative Study. AJOB Empir Bioeth 2024; 15:262-279. [PMID: 38643392 PMCID: PMC11491495 DOI: 10.1080/23294515.2024.2336903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
BACKGROUND Autism self-advocates' views regarding genetic tests for autism are important, but critical questions about their perspectives arise. METHODS We interviewed 11 autism self-advocates, recruited through autism self-advocacy websites, for 1 h each. RESULTS Interviewees viewed genetic testing and its potential pros and cons through the lens of their own indiviudal perceived challenges, needs and struggles, especially concerning stigma and discrimination, lack of accommodations and misunderstandings from society about autism, their particular needs for services, and being blamed by others and by themselves for autistic traits. Their views of genetic testing tended not to be binary, but rather depended on how the genetic test results would be used. Interviewees perceived pros of genetic testing both in general and with regard to themselves (e.g., by providing "scientific proof" of autism as a diagnosis and possibly increasing availability of services). But they also perceived disadvantages and limitations of testing (e.g., possible eugenic applications). Participants distinguished between what they felt would be best for themselves and for the autistic community as a whole. When asked if they would undergo testing for themselves, if offered, interviewees added several considerations (e.g., undergoing testing because they support science in general). Interviewees were divided whether a genetic diagnosis would or should reduce self-blame, and several were wary of testing unless treatment, prevention or societal attitudes changed. Weighing these competing pros and cons could be difficult. CONCLUSIONS This study, the first to use in-depth qualitative interviews to assess views of autism self-advocates regarding genetic testing, highlights key complexities. Respondents felt that such testing is neither wholly good or bad in itself, but rather may be acceptable depending on how it is used, and should be employed in beneficial, not harmful ways. These findings have important implications for practice, education of multiple stakeholders, research, and policy.
Collapse
Affiliation(s)
- Robert Klitzman
- Department of Psychiatry, Columbia University, New York, NY, USA
| | | | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul S Appelbaum
- Department of Law Ethics and Psychiatry, NYP Columbia University Irving Medical, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
2
|
Lin F, Liang X, Meng Y, Zhu Y, Li C, Zhou X, Hu S, Yi N, Lin Q, He S, Sun Y, Sheng J, Fan H, Li L, Peng L. Unmasking Protein Phosphatase 2A Regulatory Subunit B as a Crucial Factor in the Progression of Dilated Cardiomyopathy. Biomedicines 2024; 12:1887. [PMID: 39200351 PMCID: PMC11352103 DOI: 10.3390/biomedicines12081887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the major causes of heart failure. Although significant progress has been made in elucidating the underlying mechanisms, further investigation is required for clarifying molecular diagnostic and therapeutic targets. In this study, we found that the mRNA level of protein phosphatase 2 regulatory subunit B' delta (Ppp2r5d) was altered in the peripheral blood plasma of DCM patients. Knockdown of Ppp2r5d in murine cardiomyocytes increased the intracellular levels of reactive oxygen species (ROS) and inhibited adenosine triphosphate (ATP) synthesis. In vivo knockdown of Ppp2r5d in an isoproterenol (ISO)-induced DCM mouse model aggravated the pathogenesis and ultimately led to heart failure. Mechanistically, Ppp2r5d-deficient cardiomyocytes showed an increase in phosphorylation of STAT3 at Y705 and a decrease in phosphorylation of STAT3 at S727. The elevated levels of phosphorylation at Y705 in STAT3 triggered the upregulation of interleukin 6 (IL6) expression. Moreover, the decreased phosphorylation at S727 in STAT3 disrupted mitochondrial electron transport chain function and dysregulated ATP synthesis and ROS levels. These results hereby reveal a novel role for Ppp2r5d in modulating STAT3 pathway in DCM, suggesting it as a potential target for the therapy of the disease.
Collapse
Affiliation(s)
- Fang Lin
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yilei Meng
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Yuping Zhu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Chenyu Li
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Sangyu Hu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Na Yi
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Qin Lin
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Siyu He
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Yizhuo Sun
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Jie Sheng
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Li Li
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| | - Luying Peng
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200120, China; (F.L.)
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Department of Cell and Genetics, Tongji University School of Medicine, Tongji University, Shanghai 200120, China
| |
Collapse
|
3
|
Jiang Y, Wu B, Zhang X, Yang L, Wang S, Li H, Zhou S, Qian Y, Wang H. Thirteen New Patients of PPP2R5D Gene Mutation and the Fine Profile of Genotype-Phenotype Correlation Unraveling the Pathogenic Mechanism Underlying Macrocephaly Phenotype. CHILDREN (BASEL, SWITZERLAND) 2024; 11:897. [PMID: 39201832 PMCID: PMC11352527 DOI: 10.3390/children11080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are a group of diseases that severely affect the physical and mental health of children. The PPP2R5D gene encodes B56δ, the regulatory subunit of protein phosphatase 2A (PP2A). NDDs related to the PPP2R5D gene have recently been defined as Houge-Janssens syndrome 1. METHODS Clinical/whole exome sequencing was performed on approximately 3000 patients with NDDs from 2017 to 2023. In vitro experiments were performed to assess the impairment of variants to protein expression and the assembly of PP2A holoenzyme. The genetic information and phenotypes of the reported patients, as well as patients in this study, were summarized, and the genotype-phenotype relationship was analyzed. The probability of pathogenic missense variants in PPP2R5D was predicted using AlphaMissense (AM), and the relationship between certain phenotype and 3D protein structural features were analyzed. RESULTS Thirteen new patients carrying twelve PPP2R5D gene variants were detected, including five novel missense variants and one novel frameshift variant. In vitro experiments revealed that the frameshift variant p.H463Mfs*3 resulted in a ~50 kDa truncated protein with lower expression level. Except for E420K and T536R, other missense variants impaired holoenzyme assembly. Furthermore, we found that pathogenic/likely pathogenic (P/LP) variants that have been reported so far were all missense variants and clustered in three conserved regions, and the likelihood of P/LP mutations located in these conserved regions was extremely high. In addition, the macrocephaly phenotype was related to negatively charged residues involved in substrate recruitment. CONCLUSIONS We reported thirteen new patients with PPP2R5D gene variants and expanded the PPP2R5D variant spectrum. We confirmed the pathogenicity of novel variants through in vitro experiments. Our findings in genotype-phenotype relationship provide inspiration for genetic counseling and interpretation of variants. We also provide directions for further research on the mechanism of macrocephaly phenotype.
Collapse
Affiliation(s)
- Yinmo Jiang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.J.); (X.Z.)
| | - Bingbing Wu
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.J.); (X.Z.)
| | - Xi Zhang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.J.); (X.Z.)
| | - Lin Yang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.J.); (X.Z.)
| | - Sujuan Wang
- Department of Rehabilitation, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Huiping Li
- Department of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Shuizhen Zhou
- Neurology Department, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Yanyan Qian
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.J.); (X.Z.)
| | - Huijun Wang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.J.); (X.Z.)
| |
Collapse
|
4
|
Yau WY, Vijayan S, Ravenscroft G. PPP2R5D heterozygous pathogenic variant causes early-onset parkinsonism and treatment implications: A case report. Parkinsonism Relat Disord 2024; 124:106976. [PMID: 38718479 DOI: 10.1016/j.parkreldis.2024.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 07/05/2024]
Abstract
Neurodevelopmental disorders with early-onset parkinsonism have diverse genetic aetiologies and can mimic Parkinson's disease. We report the clinical evaluation and neuroimaging studies of a woman with intellectual disability and levodopa-responsive akinetic rigid parkinsonism. Whole-genome sequencing of family trio identified a de novo missense variant in PPP2R5D in the proband.
Collapse
Affiliation(s)
- Wai Yan Yau
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, Western Australia, 6009, Australia.
| | - Srimathy Vijayan
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, Western Australia, 6009, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
5
|
Mahale R, Arunachal G, Chadha D, Padmanabha H, M P, Pavagada M. Early-onset levodopa responsive parkinsonism in PPP2R5D mutation. Parkinsonism Relat Disord 2024; 123:106952. [PMID: 38582018 DOI: 10.1016/j.parkreldis.2024.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Affiliation(s)
- Rohan Mahale
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Deepak Chadha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Pooja M
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Mathuranath Pavagada
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| |
Collapse
|
6
|
Zreibe K, Kanner CH, Uher D, Beard G, Patterson M, Harris M, Doerger J, Calamia S, Chung WK, Montes J. Characterizing ambulatory function in children with PPP2R5D-related neurodevelopmental disorder. Gait Posture 2024; 110:77-83. [PMID: 38547676 PMCID: PMC11056288 DOI: 10.1016/j.gaitpost.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Individuals with PPP2R5D-related neurodevelopmental disorder have an atypical gait pattern characterized by ataxia and incoordination. Structured, quantitative assessments are needed to further understand the impact of these impairments on function. RESEARCH QUESTION How do gait parameters and ambulatory function of individuals with PPP2R5D-related neurodevelopmental disorder compare to age and sex matched healthy norms? METHODS Twenty-six individuals with PPP2R5D pathogenic genetic variants participated in this observational, single visit study. Participants completed at least one of the following gait assessments: quantitative gait analysis at three different speeds (preferred pace walking (PPW), fast paced walking (FPW) and running, six-minute walk test (6MWT), 10-meter walk run (10MWR), and timed up and go (TUG). Descriptive statistics were used to summarize gait variables. Percent of predicted values were calculated using published norms. Paired t-tests and regression analyses were used to compare gait variables. RESULTS The median age of the participants was 8 years (range 4-27) and eighteen (69.2 %) were female. Individuals with PPP2R5D-related neurodevelopmental disorder walked slower and with a wider base of support than predicted for their age and sex. Stride velocity ranged from 48.9 % to 70.1 % and stride distance from 58.5 % to 81.9 % of predicted during PPW. Percent of predicted distance walked on the 6MWT ranged from 30.6 % to 71.1 % representing varied walking impairment. Increases in stride distance, not cadence, were associated with changes in stride velocity in FPW (R2 = 0.675, p =< 0.001) and running conditions (R2 = 0.918, p =< 0.001). SIGNIFICANCE We quantitatively assessed the abnormal gait in individuals with PPP2R5D-related neurodevelopmental disorder. These impairments may affect ability to adapt to environmental changes and participation in daily life. Rehabilitative interventions targeting gait speed and balance may improve function and safety for individuals with PPP2R5D-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Kyle Zreibe
- Department of Rehabilitation, UHealth-Jackson Holtz Children's Hospital, Miami, FL, USA; Department of Rehabilitation & Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Cara H Kanner
- Department of Rehabilitation & Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David Uher
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| | - Gabriella Beard
- Department of Rehabilitation & Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Madison Patterson
- Department of Rehabilitation & Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew Harris
- Department of Rehabilitation & Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jerome Doerger
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sean Calamia
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA USA
| | - Jacqueline Montes
- Department of Rehabilitation & Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Sudnawa KK, Chung WK. SPARKing New Insight Into Autism Across the Lifespan. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2024; 129:91-95. [PMID: 38411241 DOI: 10.1352/1944-7558-129.2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Autism is heterogeneous at many levels, including clinical symptoms and etiology. A key strategy in studying heterogeneous conditions is having large enough sample sizes to stratify into smaller groups that are more homogeneous. SPARK and Simons Searchlight are large and growing research cohorts of individuals with autism in the United States and individuals with genetically defined neurodevelopmental conditions around the world, respectively. They both provide freely available phenotypic and genotypic data with the ability to re-contact participants through the research match program. Deep dives into each gene in Searchlight provide comprehensive natural history data to understand the differing clinical courses to inform proper clinical care, and work toward treatment for each condition. Moreover, pilots of genetically based newborn screening programs for neurogenetic disorders can provide opportunities for equitable and early diagnosis to try to improve outcomes with earlier interventions.
Collapse
Affiliation(s)
- Khemika K Sudnawa
- Khemika K. Sudnawa, Boston Children's Hospital, Harvard Medical School and Department of Pediatrics and Pramongkutklao Hospital and Pramongkutklao College of Medicine, Bangkok, Thailand
| | - Wendy K Chung
- Wendy K. Chung, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School
| |
Collapse
|
8
|
Kanner CH, Uher D, Zreibe K, Beard G, Patterson M, Harris M, Doerger J, Calamia S, Chung WK, Montes J. Validation of a modified version of the gross motor function measure in PPPR5D related neurodevelopmental disorder. Orphanet J Rare Dis 2024; 19:45. [PMID: 38326877 PMCID: PMC10848481 DOI: 10.1186/s13023-024-03067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Protein phosphatase 2 regulatory subunit B' Delta (PPP2R5D)-related neurodevelopmental disorder is a rare genetic condition caused by pathogenic variants in the PPP2R5D gene. Clinical signs include hypotonia, gross motor delay, intellectual disability (ID), epilepsy, speech delays, and abnormal gait among other impairments. As this disorder was recognized within the last decade, there are only 103 people published diagnoses to date. A thorough understanding of the motor manifestations of this disorder has not yet been established. Knowledge of the natural history of PPP2R5D related neurodevelopmental disorder will lead to improved standard of care treatments as well as serve as a baseline foundation for future clinical trials. Appropriate outcome measures are necessary for use in clinical trials to uniformly measure function and monitor potential for change. The aim of this study was to validate the gross motor function measure (GMFM) in children and adults with PPP2R5D-related neurodevelopmental disorder in order to better characterize the disorder. RESULTS Thirty-eight individuals with PPP2R5D pathogenic variants, median age 8.0 years (range 1-27) were evaluated. Gross motor, upper limb and ambulatory function were assessed using the GMFM-66, six-minute walk test (6MWT), 10-meter walk run (10MWR), timed up and go (TUG), and revised upper limb module (RULM). The pediatric disability inventory computer adapted test (PEDI-CAT) captured caregiver reported assessment. Median GMFM-66 score was 60.6 (SD = 17.3, range 21.1-96.0). There were strong associations between the GMFM-66 and related mobility measures, 10MWR (rs = -0.733; p < 0.001), TUG (rs= -0.747; p = 0.003), 6MWT (r = 0.633; p = 0.006), RULM (r = 0.763; p < 0.001), PEDICAT-mobility (r = 0.855; p < 0.001), and daily activities (r = 0.822; p < 0.001) domains. CONCLUSIONS The GMFM is a valid measure for characterizing motor function in individuals with PPP2R5D related neurodevelopmental disorder. The GMFM-66 had strong associations with the RULM and timed function tests which characterized gross motor, upper limb and ambulatory function demonstrating concurrent validity. The GMFM-66 was also able to differentiate between functional levels in PPP2R5D related neurodevelopmental disorder demonstrating discriminant validity. Future studies should examine its sensitivity to change over time, ability to identify sub-phenotypes, and suitability as an outcome measure in future clinical trials in individuals with PPP2R5D variants.
Collapse
Affiliation(s)
- Cara H Kanner
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, 617 West 168th Street, New York, NY, 10032, USA.
| | - David Uher
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, 617 West 168th Street, New York, NY, 10032, USA
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| | - Kyle Zreibe
- Department of Rehabilitation, UHealth-Jackson Holtz Children's Hospital, Miami, FL, USA
| | - Gabriella Beard
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, 617 West 168th Street, New York, NY, 10032, USA
| | - Madison Patterson
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, 617 West 168th Street, New York, NY, 10032, USA
| | - Matthew Harris
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, 617 West 168th Street, New York, NY, 10032, USA
| | - Jerome Doerger
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sean Calamia
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacqueline Montes
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, 617 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
9
|
Wu CG, Balakrishnan VK, Merrill RA, Parihar PS, Konovolov K, Chen YC, Xu Z, Wei H, Sundaresan R, Cui Q, Wadzinski BE, Swingle MR, Musiyenko A, Chung WK, Honkanen RE, Suzuki A, Huang X, Strack S, Xing Y. B56δ long-disordered arms form a dynamic PP2A regulation interface coupled with global allostery and Jordan's syndrome mutations. Proc Natl Acad Sci U S A 2024; 121:e2310727120. [PMID: 38150499 PMCID: PMC10769853 DOI: 10.1073/pnas.2310727120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Intrinsically disordered regions (IDR) and short linear motifs (SLiMs) play pivotal roles in the intricate signaling networks governed by phosphatases and kinases. B56δ (encoded by PPP2R5D) is a regulatory subunit of protein phosphatase 2A (PP2A) with long IDRs that harbor a substrate-mimicking SLiM and multiple phosphorylation sites. De novo missense mutations in PPP2R5D cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Our single-particle cryo-EM structures of the PP2A-B56δ holoenzyme reveal that the long, disordered arms at the B56δ termini fold against each other and the holoenzyme core. This architecture suppresses both the phosphatase active site and the substrate-binding protein groove, thereby stabilizing the enzyme in a closed latent form with dual autoinhibition. The resulting interface spans over 190 Å and harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is coupled to an allosteric network responsive to phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations increase the holoenzyme activity and perturb the phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the normal variant.
Collapse
Affiliation(s)
- Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
| | - Vijaya K. Balakrishnan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Ronald A. Merrill
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA52242
| | - Pankaj S. Parihar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Kirill Konovolov
- Chemistry Department, University of Wisconsin at Madison, Madison, WI53706
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Molecular and Cellular Pharmacology Program, University of Wisconsin at Madison, Madison, WI53706
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA52242
| | - Hui Wei
- The Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY10027
| | - Ramya Sundaresan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA02215
| | | | - Mark R. Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA02215
| | - Richard E. Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL36688
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
- Molecular and Cellular Pharmacology Program, University of Wisconsin at Madison, Madison, WI53706
| | - Xuhui Huang
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
- Chemistry Department, University of Wisconsin at Madison, Madison, WI53706
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA52242
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI53705
- Biophysics Program, University of Wisconsin at Madison, Madison, WI53706
| |
Collapse
|
10
|
Klitzman R, Bezborodko E, Chung WK, Appelbaum PS. Impact of Receiving Genetic Diagnoses on Parents' Perceptions of Their Children with Autism and Intellectual Disability. J Autism Dev Disord 2023:10.1007/s10803-023-06195-0. [PMID: 38158539 PMCID: PMC11213829 DOI: 10.1007/s10803-023-06195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
To assess whether genetic test results identifying the cause of a child's autism, when accompanied by other neurodevelopmental disorders (NDD), including intellectual disability, alter how parents perceive and treat their child. 28 parents of 22 individuals with autism (mean age: 15 years), usually with other NDDs, were interviewed after receiving genetic diagnoses indicating a de novo mutation through the Simons Foundation Powering Autism Research for Knowledge study. Diagnosis of a de novo genetic variant can alter parental perceptions of offspring with autism and other NDDs. Parents often blamed their child less, saw their child as less in control of symptoms, and developed more patience, framing expectations accordingly. Parents had mixed feelings about receiving genetic diagnoses, with sadness sometimes accompanying reframed expectations. Genetic diagnoses could change views of the child among extended family members, teachers, social service agencies, insurers, and broader communities and society. Genetic testing might also reduce delays in diagnoses of autism among African American, Latino and other children. These data, the first to examine several critical aspects of how parents and others view children with autism and other NDDs after receiving genetic diagnoses, highlight vital needs for education of multiple stakeholders (including geneticists, other physicians, genetic counselors, parents, individuals with autism, social service agencies, insurers, policymakers, and the broader public), research (to include perspectives of extended family members, insurers, social service agencies and teachers) and practice (to increase recognition and awareness of the potential benefits and effects of genetic testing for such children).
Collapse
Affiliation(s)
- Robert Klitzman
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Joseph L. Mailman School of Public Health, Columbia University, 1051 Riverside Drive; Mail Unit #15, New York, NY, 10032, USA.
| | | | - Wendy K Chung
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul S Appelbaum
- Department of Law Ethics and Psychiatry, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
11
|
Alhajaj G, Lacroix C, Trakadis Y, Garfinkle J, Srour M. An in-frame deletion affecting the critical acid loop of PPP2R5D is associated with a neonatal lethal form of PPP2R5D-related neurodevelopmental disorder. Am J Med Genet A 2023; 191:2416-2421. [PMID: 37248744 DOI: 10.1002/ajmg.a.63307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/31/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023]
Abstract
Heterozygous pathogenic variants in PPP2R5D gene are associated with PPP2R5D-related neurodevelopmental disorder, a rare autosomal dominant condition, characterized by neurodevelopmental impairment in childhood, macrocephaly/megalencephaly, hypotonia, epilepsy, and dysmorphic features. Up-to-date, only approximately 100 cases have been published in the literature and the full phenotypic and genotypic spectrum have not yet been fully described. PPP2R5D gene encodes the B56δ subunit of the PP2A enzyme complex. We describe a neonatal form of PPP2R5D-related disorder with early infantile death, caused by a novel in-frame deletion causing loss of 8 amino acids and insertion of serine at position 201 (p.Phe194_Pro201delinsSer) of the B56δ subunit. This deletion is predicted to disrupt a critical acidic loop of amino acids important for binding other subunits of the PP2A enzyme complex, and harbors many of the residues previously reported to cause a mild-moderate form of this condition. This report describes a neonatal lethal presentation of the PPP2R5D-related neurodevelopmental disorder and provides additional evidence that disruption of the acidic loop is an important pathomechanism underlying PPP2R5D-related disorder.
Collapse
Affiliation(s)
- Ghadd Alhajaj
- Department of Pediatrics, Unaizah College of Medicine and Medical Sciences, Qassim University, Saudi Arabia
- Department of Pediatrics, Division of Pediatric Neurology, McGill University Health Center, Montreal, Quebec, Canada
| | - Caroline Lacroix
- Department of Diagnostic Radiology, McGill University Health Center, Montreal, Quebec, Canada
| | - Yannis Trakadis
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Quebec, Canada
| | - Jarred Garfinkle
- Department of Pediatrics, Division of Neonatology, McGill University Health Center, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Myriam Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University Health Center, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Fevga C, Tesson C, Carreras Mascaro A, Courtin T, van Coller R, Sakka S, Ferraro F, Farhat N, Bardien S, Damak M, Carr J, Ferrien M, Boumeester V, Hundscheid J, Grillenzoni N, Kessissoglou IA, Kuipers DJS, Quadri M, Corvol JC, Mhiri C, Hassan BA, Breedveld GJ, Lesage S, Mandemakers W, Brice A, Bonifati V. PTPA variants and impaired PP2A activity in early-onset parkinsonism with intellectual disability. Brain 2023; 146:1496-1510. [PMID: 36073231 PMCID: PMC10115167 DOI: 10.1093/brain/awac326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T>G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C>A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.
Collapse
Affiliation(s)
- Christina Fevga
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Christelle Tesson
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Thomas Courtin
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France
| | - Riaan van Coller
- Department of Neurology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Salma Sakka
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Federico Ferraro
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Nouha Farhat
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Mariem Damak
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mélanie Ferrien
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Jasmijn Hundscheid
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Nicola Grillenzoni
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Irini A Kessissoglou
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Demy J S Kuipers
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Jean-Christophe Corvol
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Neurologie, Centre d'Investigation Clinique Neurosciences, DMU Neuroscience, Paris, France
| | - Chokri Mhiri
- Research Unit in Neurogenetics, Clinical Investigation Center (CIC) at the CHU Habib Bourguiba, Sfax, Tunisia
| | - Bassem A Hassan
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Suzanne Lesage
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Alexis Brice
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Département de Génétique, DMU BioGeM, Paris, France
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
13
|
Wu CG, Balakrishnan VK, Parihar PS, Konovolov K, Chen YC, Merrill RA, Wei H, Carragher B, Sundaresan R, Cui Q, Wadzinski BE, Swingle MR, Musiyenko A, Honkanen R, Chung WK, Suzuki A, Strack S, Huang X, Xing Y. Extended regulation interface coupled to the allosteric network and disease mutations in the PP2A-B56δ holoenzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.530109. [PMID: 37066309 PMCID: PMC10103954 DOI: 10.1101/2023.03.09.530109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An increasing number of mutations associated with devastating human diseases are diagnosed by whole-genome/exon sequencing. Recurrent de novo missense mutations have been discovered in B56δ (encoded by PPP2R5D), a regulatory subunit of protein phosphatase 2A (PP2A), that cause intellectual disabilities (ID), macrocephaly, Parkinsonism, and a broad range of neurological symptoms. Single-particle cryo-EM structures show that the PP2A-B56δ holoenzyme possesses closed latent and open active forms. In the closed form, the long, disordered arms of B56δ termini fold against each other and the holoenzyme core, establishing dual autoinhibition of the phosphatase active site and the substrate-binding protein groove. The resulting interface spans over 190 Å and harbors unfavorable contacts, activation phosphorylation sites, and nearly all residues with ID-associated mutations. Our studies suggest that this dynamic interface is close to an allosteric network responsive to activation phosphorylation and altered globally by mutations. Furthermore, we found that ID mutations perturb the activation phosphorylation rates, and the severe variants significantly increase the mitotic duration and error rates compared to the wild variant.
Collapse
Affiliation(s)
- Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Vijaya K. Balakrishnan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Pankaj S. Parihar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Kirill Konovolov
- Chemistry Department, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Molecular and Cellular Pharmacology program, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wei
- New York Structural biology Center, New York, NY 10027, USA
| | | | - Ramya Sundaresan
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Qiang Cui
- Department of Chemistry, Metcalf Center for Science & Engineering, Boston University, Boston, MA 02215, USA
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark R. Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Alla Musiyenko
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Richard Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Xuhui Huang
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
- Chemistry Department, University of Wisconsin at Madison, Wisconsin 53706, USA
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, Wisconsin 53705, USA
- Biophysics program, University of Wisconsin at Madison, Wisconsin 53706, USA
| |
Collapse
|
14
|
Schwab K, Coronel L, Riege K, Sacramento EK, Rahnis N, Häckes D, Cirri E, Groth M, Hoffmann S, Fischer M. Multi-omics analysis identifies RFX7 targets involved in tumor suppression and neuronal processes. Cell Death Discov 2023; 9:80. [PMID: 36864036 PMCID: PMC9981735 DOI: 10.1038/s41420-023-01378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Recurrently mutated in lymphoid neoplasms, the transcription factor RFX7 is emerging as a tumor suppressor. Previous reports suggested that RFX7 may also have a role in neurological and metabolic disorders. We recently reported that RFX7 responds to p53 signaling and cellular stress. Furthermore, we found RFX7 target genes to be dysregulated in numerous cancer types also beyond the hematological system. However, our understanding of RFX7's target gene network and its role in health and disease remains limited. Here, we generated RFX7 knock-out cells and employed a multi-omics approach integrating transcriptome, cistrome, and proteome data to obtain a more comprehensive picture of RFX7 targets. We identify novel target genes linked to RFX7's tumor suppressor function and underscoring its potential role in neurological disorders. Importantly, our data reveal RFX7 as a mechanistic link that enables the activation of these genes in response to p53 signaling.
Collapse
Affiliation(s)
- Katjana Schwab
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Luis Coronel
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Konstantin Riege
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Erika K. Sacramento
- grid.418245.e0000 0000 9999 5706Core Facility for Proteomics, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Norman Rahnis
- grid.418245.e0000 0000 9999 5706Core Facility for Proteomics, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - David Häckes
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Emilio Cirri
- grid.418245.e0000 0000 9999 5706Core Facility for Proteomics, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Marco Groth
- grid.418245.e0000 0000 9999 5706Core Facility for Next-Generation Sequencing, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Steve Hoffmann
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany.
| |
Collapse
|
15
|
Spagnoli C, Fusco C, Pisani F. Pediatric-Onset Epilepsy and Developmental Epileptic Encephalopathies Followed by Early-Onset Parkinsonism. Int J Mol Sci 2023; 24:ijms24043796. [PMID: 36835207 PMCID: PMC9965035 DOI: 10.3390/ijms24043796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Genetic early-onset Parkinsonism is unique due to frequent co-occurrence of hyperkinetic movement disorder(s) (MD), or additional neurological of systemic findings, including epilepsy in up to 10-15% of cases. Based on both the classification of Parkinsonism in children proposed by Leuzzi and coworkers and the 2017 ILAE epilepsies classification, we performed a literature review in PubMed. A few discrete presentations can be identified: Parkinsonism as a late manifestation of complex neurodevelopmental disorders, characterized by developmental and epileptic encephalopathies (DE-EE), with multiple, refractory seizure types and severely abnormal EEG characteristics, with or without preceding hyperkinetic MD; Parkinsonism in the context of syndromic conditions with unspecific reduced seizure threshold in infancy and childhood; neurodegenerative conditions with brain iron accumulation, in which childhood DE-EE is followed by neurodegeneration; and finally, monogenic juvenile Parkinsonism, in which a subset of patients with intellectual disability or developmental delay (ID/DD) develop hypokinetic MD between 10 and 30 years of age, following unspecific, usually well-controlled, childhood epilepsy. This emerging group of genetic conditions leading to epilepsy or DE-EE in childhood followed by juvenile Parkinsonism highlights the need for careful long-term follow-up, especially in the context of ID/DD, in order to readily identify individuals at increased risk of later Parkinsonism.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-0522-296033
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Francesco Pisani
- Human Neurosciences Department, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
16
|
Cisterna A, González-Vidal A, Ruiz D, Ortiz J, Gómez-Pascual A, Chen Z, Nalls M, Faghri F, Hardy J, Díez I, Maietta P, Álvarez S, Ryten M, Botía JA. PhenoExam: gene set analyses through integration of different phenotype databases. BMC Bioinformatics 2022; 23:567. [PMID: 36587217 PMCID: PMC9805686 DOI: 10.1186/s12859-022-05122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Gene set enrichment analysis (detecting phenotypic terms that emerge as significant in a set of genes) plays an important role in bioinformatics focused on diseases of genetic basis. To facilitate phenotype-oriented gene set analysis, we developed PhenoExam, a freely available R package for tool developers and a web interface for users, which performs: (1) phenotype and disease enrichment analysis on a gene set; (2) measures statistically significant phenotype similarities between gene sets and (3) detects significant differential phenotypes or disease terms across different databases. RESULTS PhenoExam generates sensitive and accurate phenotype enrichment analyses. It is also effective in segregating gene sets or Mendelian diseases with very similar phenotypes. We tested the tool with two similar diseases (Parkinson and dystonia), to show phenotype-level similarities but also potentially interesting differences. Moreover, we used PhenoExam to validate computationally predicted new genes potentially associated with epilepsy. CONCLUSIONS We developed PhenoExam, a freely available R package and Web application, which performs phenotype enrichment and disease enrichment analysis on gene set G, measures statistically significant phenotype similarities between pairs of gene sets G and G' and detects statistically significant exclusive phenotypes or disease terms, across different databases. We proved with simulations and real cases that it is useful to distinguish between gene sets or diseases with very similar phenotypes. Github R package URL is https://github.com/alexcis95/PhenoExam . Shiny App URL is https://alejandrocisterna.shinyapps.io/phenoexamweb/ .
Collapse
Affiliation(s)
- Alejandro Cisterna
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Aurora González-Vidal
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Daniel Ruiz
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Jordi Ortiz
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Alicia Gómez-Pascual
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Zhongbo Chen
- Department of Neurodegenerative Disease, UCL, Institute of Neurology, London, UK
| | - Mike Nalls
- Data Tecnica International LLC, Glen Echo, MD, USA
- Laboratory of Neurogenetics, NIA/NIH, Bethesda, MD, USA
- Center for Alzheimer's and Related Dememtias, NIH, Bethesda, MD, USA
| | - Faraz Faghri
- Data Tecnica International LLC, Glen Echo, MD, USA
- Laboratory of Neurogenetics, NIA/NIH, Bethesda, MD, USA
- Center for Alzheimer's and Related Dememtias, NIH, Bethesda, MD, USA
| | - John Hardy
- Department of Neurodegenerative Disease, UCL, Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene Díez
- NIMGenetics Genómica y Medicina S.L, Madrid, Spain
| | | | - Sara Álvarez
- NIMGenetics Genómica y Medicina S.L, Madrid, Spain
| | - Mina Ryten
- Department of Neurodegenerative Disease, UCL, Institute of Neurology, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, WC1E 6BT, UK
| | - Juan A Botía
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain.
- Department of Neurodegenerative Disease, UCL, Institute of Neurology, London, UK.
| |
Collapse
|
17
|
A novel nonsense mutation in PPP2R5D is associated with neurodevelopmental disorders and shows incomplete penetrance in a Chinese pedigree. Clin Neurol Neurosurg 2022; 223:107524. [DOI: 10.1016/j.clineuro.2022.107524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
|
18
|
von Scheibler EN, van Eeghen AM, de Koning TJ, Kuijf ML, Zinkstok JR, Müller AR, van Amelsvoort TA, Boot E. Parkinsonism in Genetic Neurodevelopmental Disorders: A Systematic Review. Mov Disord Clin Pract 2022; 10:17-31. [PMID: 36699000 PMCID: PMC9847320 DOI: 10.1002/mdc3.13577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/25/2022] [Accepted: 08/16/2022] [Indexed: 01/28/2023] Open
Abstract
Background With advances in clinical genetic testing, associations between genetic neurodevelopmental disorders and parkinsonism are increasingly recognized. In this review, we aimed to provide a comprehensive overview of reports on parkinsonism in genetic neurodevelopmental disorders and summarize findings related to genetic diagnosis, clinical features and proposed disease mechanisms. Methods A systematic literature review was conducted in PubMed and Embase on June 15, 2021. Search terms for parkinsonism and genetic neurodevelopmental disorders, using generic terms and the Human Phenotype Ontology, were combined. Study characteristics and descriptive data were extracted from the articles using a modified version of the Cochrane Consumers and Communication Review Group's data extraction template. The protocol was registered in PROSPERO (CRD42020191035). Results The literature search yielded 208 reports for data-extraction, describing 69 genetic disorders in 422 patients. The five most reported from most to least frequent were: 22q11.2 deletion syndrome, beta-propeller protein-associated neurodegeneration, Down syndrome, cerebrotendinous xanthomatosis, and Rett syndrome. Notable findings were an almost equal male to female ratio, an early median age of motor onset (26 years old) and rigidity being more common than rest tremor. Results of dopaminergic imaging and response to antiparkinsonian medication often supported the neurodegenerative nature of parkinsonism. Moreover, neuropathology results showed neuronal loss in the majority of cases. Proposed disease mechanisms included aberrant mitochondrial function and disruptions in neurotransmitter metabolism, endosomal trafficking, and the autophagic-lysosomal and ubiquitin-proteasome system. Conclusion Parkinsonism has been reported in many GNDs. Findings from this study may provide clues for further research and improve management of patients with GNDs and/or parkinsonism.
Collapse
Affiliation(s)
- Emma N.M.M. von Scheibler
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
| | - Agnies M. van Eeghen
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Emma Children's HospitalUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tom J. de Koning
- Department of GeneticsUniversity of GroningenGroningenThe Netherlands,Expertise Centre Movement Disorders GroningenUniversity Medical Centre GroningenGroningenThe Netherlands,Pediatrics, Department of Clinical SciencesLund UniversityLundSweden
| | - Mark L. Kuijf
- Department of NeurologyMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Janneke R. Zinkstok
- Department of PsychiatryRadoud University Medical CentreNijmegenThe Netherlands,Karakter child and adolescent psychiatryNijmegenThe Netherlands,Department of Psychiatry and Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Annelieke R. Müller
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Emma Children's HospitalUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Erik Boot
- Advisium'sHeeren Loo ZorggroepAmersfoortThe Netherlands,Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands,The Dalglish Family 22q ClinicUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
19
|
Vaneynde P, Verbinnen I, Janssens V. The role of serine/threonine phosphatases in human development: Evidence from congenital disorders. Front Cell Dev Biol 2022; 10:1030119. [PMID: 36313552 PMCID: PMC9608770 DOI: 10.3389/fcell.2022.1030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Reversible protein phosphorylation is a fundamental regulation mechanism in eukaryotic cell and organismal physiology, and in human health and disease. Until recently, and unlike protein kinases, mutations in serine/threonine protein phosphatases (PSP) had not been commonly associated with disorders of human development. Here, we have summarized the current knowledge on congenital diseases caused by mutations, inherited or de novo, in one of 38 human PSP genes, encoding a monomeric phosphatase or a catalytic subunit of a multimeric phosphatase. In addition, we highlight similar pathogenic mutations in genes encoding a specific regulatory subunit of a multimeric PSP. Overall, we describe 19 affected genes, and find that most pathogenic variants are loss-of-function, with just a few examples of gain-of-function alterations. Moreover, despite their widespread tissue expression, the large majority of congenital PSP disorders are characterised by brain-specific abnormalities, suggesting a generalized, major role for PSPs in brain development and function. However, even if the pathogenic mechanisms are relatively well understood for a small number of PSP disorders, this knowledge is still incomplete for most of them, and the further identification of downstream targets and effectors of the affected PSPs is eagerly awaited through studies in appropriate in vitro and in vivo disease models. Such lacking studies could elucidate the exact mechanisms through which these diseases act, and possibly open up new therapeutic avenues.
Collapse
Affiliation(s)
- Pieter Vaneynde
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
- Leuven Brain Institute (LBI), Leuven, Belgium
- *Correspondence: Veerle Janssens,
| |
Collapse
|
20
|
Oyama N, Vaneynde P, Reynhout S, Pao EM, Timms A, Fan X, Foss K, Derua R, Janssens V, Chung W, Mirzaa GM. Clinical, neuroimaging and molecular characteristics of PPP2R5D-related neurodevelopmental disorders: an expanded series with functional characterisation and genotype-phenotype analysis. J Med Genet 2022; 60:511-522. [PMID: 36216457 DOI: 10.1136/jmg-2022-108713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Variants in PPP2R5D, affecting the regulatory B56δ subunit of protein phosphatase 2A (PP2A), have been identified in individuals with neurodevelopmental abnormalities. However, the molecular and clinical spectra remain incompletely understood. METHODS Individuals with PPP2R5D variants were enrolled through Simons Variation in Individuals Project/Simons Searchlight. Data were collected from medical history interviews, medical record review, online validated instruments and neuroimaging review. Genetic variants were biochemically characterised. RESULTS We studied 76 individuals with PPP2R5D variants, including 68 with pathogenic de novo variants, four with a variant of uncertain significance (VUS) and four siblings with a novel dominantly inherited pathogenic variant. Among 13 pathogenic variants, eight were novel and two (p.Glu198Lys and p.Glu200Lys) were highly recurrent. Functional analysis revealed impaired PP2A A/C-subunit binding, decreased short linear interaction motif-dependent substrate binding or both-with the most severe phenotypes associated with variants that completely retained one of these binding characteristics and lost the other-further supporting a dominant-negative disease mechanism. p.Glu198Lys showed the highest C-binding defect and a more severe clinical phenotype. The inherited p.Glu197Gly variant had a mild substrate binding defect, and three of four VUS had no biochemical impact. Common clinical phenotypes were language, intellectual or learning disabilities (80.6%), hypotonia (75.0%), macrocephaly (66.7%), seizures (45.8%) and autism spectrum disorder (26.4%). The mean composite Vineland score was 59.8, and most participants were in the 'moderate to low' and 'low' adaptive levels in all domains. CONCLUSION Our study delineates the most common features of PPP2R5D-related neurodevelopmental disorders, expands the clinical and molecular spectrum and identifies genotype-phenotype correlations.
Collapse
Affiliation(s)
- Nora Oyama
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Pieter Vaneynde
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Sara Reynhout
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Emily M Pao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Xiao Fan
- Department of Pediatrics, Columbia University, New York City, New York, USA
| | - Kimberly Foss
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,SyBioMa, University of Leuven (KU Leuven), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.,KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Wendy Chung
- Department of Pediatrics, Columbia University, New York City, New York, USA.,Department of Medicine, Columbia University, New York City, New York, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA .,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Wirth T. Disruption of striatal dopaminergic pathway: A new plot twist in dystonia genetic story. Rev Neurol (Paris) 2022; 178:751-753. [PMID: 36153254 DOI: 10.1016/j.neurol.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Affiliation(s)
- T Wirth
- Service de neurologie, hôpitaux universitaires de Strasbourg, 67098 Strasbourg, France; Institut de génétique et de biologie moléculaire et cellulaire, Inserm-U964/CNRS-UMR7104/université de Strasbourg, Illkirch-Graffenstaden, France; Fédération de médecine translationnelle de Strasbourg, université de Strasbourg, Strasbourg, France.
| |
Collapse
|
22
|
Dzinovic I, Winkelmann J, Zech M. Genetic intersection between dystonia and neurodevelopmental disorders: Insights from genomic sequencing. Parkinsonism Relat Disord 2022; 102:131-140. [DOI: 10.1016/j.parkreldis.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
23
|
Ning P, Li K, Ren H, Yang H, Xu Y, Yang X. Rare missense variants in the PPP2R5D gene associated with Parkinson’s disease in the Han Chinese population. Neurosci Lett 2022; 776:136564. [DOI: 10.1016/j.neulet.2022.136564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/02/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
24
|
Madaan P, Kaur A, Saini L, Paria P, Vyas S, Sharma AR, Sahu JK. PPP2R5D-Related Neurodevelopmental Disorder or Developmental and Epileptic Encephalopathy?: A Novel Phenotypic Description and Review of Published Cases. Neuropediatrics 2022; 53:20-25. [PMID: 34448180 DOI: 10.1055/s-0041-1733984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Protein phosphatase 2 regulatory subunit B' delta (PPP2R5D)-related neurodevelopmental disorder is caused by pathogenic variations in the PPP2R5D gene, product of which is involved in dephosphorylation. This is a rare disorder with description limited to case reports. Its phenotypic spectrum has expanded over the last decade. METHODS We report a child with a developmental and epileptic encephalopathy phenotype with a pathogenic PPP2R5D variant. This phenotype has not been previously reported. We also reviewed the previously published reports of patients with this disorder. RESULTS Including the index child, 28 cases (15 girls) were identified from nine relevant research items for analysis. All patients had developmental delay. History of seizures was observed in seven patients while macrocephaly was seen in nearly 80% of patients. Nonneurological manifestations were observed in 13 patients with the most common one being ophthalmological manifestations. The most common genetic variation was c.G592A (p.E198K). The common phenotypic associations of this variation were developmental delay, macrocephaly (11/15), and epilepsy (6/15). CONCLUSION PPP2R5D gene variations should be suspected in children with developmental delay, autistic features, macrocephaly with or without epilepsy in the absence of any clear etiology. Dysmorphic features might provide a diagnostic clue. DEE phenotype may also be the presenting feature and might be an underreported entity.
Collapse
Affiliation(s)
- Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amrit Kaur
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Lokesh Saini
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Pradip Paria
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sameer Vyas
- Department of Radiodiagnosis and Imaging (Section of Neuroimaging and Interventional Radiology), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amit R Sharma
- Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jitendra K Sahu
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
25
|
Neurogenetic disorders across the lifespan: from aberrant development to degeneration. Nat Rev Neurol 2022; 18:117-124. [PMID: 34987232 PMCID: PMC10132523 DOI: 10.1038/s41582-021-00595-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Intellectual disability and autism spectrum disorder (ASD) are common, and genetic testing is increasingly performed in individuals with these diagnoses to inform prognosis, refine management and provide information about recurrence risk in the family. For neurogenetic conditions associated with intellectual disability and ASD, data on natural history in adults are scarce; however, as older adults with these disorders are identified, it is becoming clear that some conditions are associated with both neurodevelopmental problems and neurodegeneration. Moreover, emerging evidence indicates that some neurogenetic conditions associated primarily with neurodegeneration also affect neurodevelopment. In this Perspective, we discuss examples of diseases that have developmental and degenerative overlap. We propose that neurogenetic disorders should be studied continually across the lifespan to understand the roles of the affected genes in brain development and maintenance, and to inform strategies for treatment.
Collapse
|
26
|
Tabolacci E, Pomponi MG, Remondini L, Pietrobono R, Orteschi D, Nobile V, Pucci C, Musto E, Pane M, Mercuri EM, Neri G, Genuardi M, Chiurazzi P, Zollino M. Co-Occurrence of Fragile X Syndrome with a Second Genetic Condition: Three Independent Cases of Double Diagnosis. Genes (Basel) 2021; 12:genes12121909. [PMID: 34946857 PMCID: PMC8701878 DOI: 10.3390/genes12121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/04/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and autism caused by the instability of a CGG trinucleotide repeat in exon 1 of the FMR1 gene. The co-occurrence of FXS with other genetic disorders has only been occasionally reported. Here, we describe three independent cases of FXS co-segregation with three different genetic conditions, consisting of Duchenne muscular dystrophy (DMD), PPP2R5D--related neurodevelopmental disorder, and 2p25.3 deletion. The co-occurrence of DMD and FXS has been reported only once in a young boy, while in an independent family two affected boys were described, the elder diagnosed with FXS and the younger with DMD. This represents the second case in which both conditions coexist in a 5-year-old boy, inherited from his heterozygous mother. The next double diagnosis had never been reported before: through exome sequencing, a girl with FXS who was of 7 years of age with macrocephaly and severe psychomotor delay was found to carry a de novo variant in the PPP2R5D gene. Finally, a maternally inherited 2p25.3 deletion associated with a decreased level of the MYT1L transcript, only in the patient, was observed in a 33-year-old FXS male with severe seizures compared to his mother and two sex- and age-matched controls. All of these patients represent very rare instances of genetic conditions with clinical features that can be modified by FXS and vice versa.
Collapse
Affiliation(s)
- Elisabetta Tabolacci
- Sezione di Medicina Genomica, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.); (G.N.); (M.G.); (M.Z.)
| | - Maria Grazia Pomponi
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.G.P.); (L.R.); (R.P.); (D.O.)
| | - Laura Remondini
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.G.P.); (L.R.); (R.P.); (D.O.)
| | - Roberta Pietrobono
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.G.P.); (L.R.); (R.P.); (D.O.)
| | - Daniela Orteschi
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.G.P.); (L.R.); (R.P.); (D.O.)
| | - Veronica Nobile
- Sezione di Medicina Genomica, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.); (G.N.); (M.G.); (M.Z.)
| | - Cecilia Pucci
- Sezione di Medicina Genomica, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.); (G.N.); (M.G.); (M.Z.)
| | - Elisa Musto
- Sezione di Neuropsichiatria Infantile, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.M.); (M.P.); (E.M.M.)
- Unità di Neuropsichiatria Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marika Pane
- Sezione di Neuropsichiatria Infantile, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.M.); (M.P.); (E.M.M.)
- Unità di Neuropsichiatria Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Eugenio M. Mercuri
- Sezione di Neuropsichiatria Infantile, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.M.); (M.P.); (E.M.M.)
- Unità di Neuropsichiatria Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Neri
- Sezione di Medicina Genomica, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.); (G.N.); (M.G.); (M.Z.)
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Maurizio Genuardi
- Sezione di Medicina Genomica, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.); (G.N.); (M.G.); (M.Z.)
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.G.P.); (L.R.); (R.P.); (D.O.)
| | - Pietro Chiurazzi
- Sezione di Medicina Genomica, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.); (G.N.); (M.G.); (M.Z.)
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.G.P.); (L.R.); (R.P.); (D.O.)
- Correspondence: ; Tel.: +39-06-30154606
| | - Marcella Zollino
- Sezione di Medicina Genomica, Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.T.); (V.N.); (C.P.); (G.N.); (M.G.); (M.Z.)
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (M.G.P.); (L.R.); (R.P.); (D.O.)
| |
Collapse
|
27
|
Morales-Briceno H, Fung VSC, Bhatia KP, Balint B. Parkinsonism and dystonia: Clinical spectrum and diagnostic clues. J Neurol Sci 2021; 433:120016. [PMID: 34642024 DOI: 10.1016/j.jns.2021.120016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/20/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
The links between the two archetypical basal ganglia disorders, dystonia and parkinsonism, are manifold and stem from clinical observations, imaging studies, animal models and genetics. The combination of both, i.e. the syndrome of dystonia-parkinsonism, is not uncommonly seen in movement disorders clinics and has a myriad of different underlying aetiologies, upon which treatment and prognosis depend. Based on a comprehensive literature review, we delineate the clinical spectrum of disorders presenting with dystonia-parkinsonism. The clinical approach depends primarily on the age at onset, associated neurological or systemic symptoms and neuroimaging. The tempo of disease progression, and the response to L-dopa are further important clues to tailor diagnostic approaches that may encompass dopamine transporter imaging, CSF analysis and, last but not least, genetic testing. Later in life, sporadic neurodegenerative conditions are the most frequent cause, but the younger the patient, the more likely the cause is unravelled by the recent advances of molecular genetics that are focus of this review. Here, knowledge of the associated phenotypic spectrum is key to guide genetic testing and interpretation of test results. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Hugo Morales-Briceno
- Neurology Department, Movement Disorders Unit, Westmead Hospital, NSW, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Victor S C Fung
- Neurology Department, Movement Disorders Unit, Westmead Hospital, NSW, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Kailash P Bhatia
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London WC1N 3BG, United Kingdom
| | - Bettina Balint
- Department of Neurology, University Hospital Heidelberg, Germany.
| |
Collapse
|
28
|
Riboldi GM, Frattini E, Monfrini E, Frucht SJ, Fonzo AD. A Practical Approach to Early-Onset Parkinsonism. JOURNAL OF PARKINSONS DISEASE 2021; 12:1-26. [PMID: 34569973 PMCID: PMC8842790 DOI: 10.3233/jpd-212815] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Early-onset parkinsonism (EO parkinsonism), defined as subjects with disease onset before the age of 40 or 50 years, can be the main clinical presentation of a variety of conditions that are important to differentiate. Although rarer than classical late-onset Parkinson’s disease (PD) and not infrequently overlapping with forms of juvenile onset PD, a correct diagnosis of the specific cause of EO parkinsonism is critical for offering appropriate counseling to patients, for family and work planning, and to select the most appropriate symptomatic or etiopathogenic treatments. Clinical features, radiological and laboratory findings are crucial for guiding the differential diagnosis. Here we summarize the most important conditions associated with primary and secondary EO parkinsonism. We also proposed a practical approach based on the current literature and expert opinion to help movement disorders specialists and neurologists navigate this complex and challenging landscape.
Collapse
Affiliation(s)
- Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Emanuele Frattini
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation , University of Milan, Milan, Italy
| | - Edoardo Monfrini
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation , University of Milan, Milan, Italy
| | - Steven J Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Alessio Di Fonzo
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
29
|
O'Shea SA, Hickman RA, Cortes E, Vonsattel JP, Fahn S, Okur V, Alcalay RN, Chung WK. Neuropathological Findings in a Case of Parkinsonism and Developmental Delay Associated with a Monoallelic Variant in PLXNA1. Mov Disord 2021; 36:2681-2687. [PMID: 34415653 DOI: 10.1002/mds.28756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND PLXNA1 encodes for Plexin-A, a transmembrane protein expressed in the developing nervous system. Mutations in this gene have been associated with developmental delay but have not been previously associated with the development of parkinsonism. OBJECTIVES To describe the case of a 38-year-old patient with developmental delay who developed parkinsonism later in life. METHODS Post-mortem exome sequencing was performed with confirmation by Sanger sequencing. Brain autopsy was also performed. RESULTS Post-mortem exome sequencing on the proband identified a heterozygous predicted nonsense PLXNA1 variant (c.G3361T:p.Glu1121Ter). Pathology demonstrated arhinencephaly with brainstem heterotopia, diffuse Lewy body disease, and frontotemporal lobar dementia-tau. CONCLUSIONS This case of a patient with developmental delay and parkinsonism with PLXNA1 mutation highlights a need for assessing long-term outcomes of individuals with neurodevelopmental disorders, as well as the need for genetic testing in adults. It also suggests that the link between PLXNA1 and α-synuclein should be explored in the future. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sarah A O'Shea
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Richard A Hickman
- Department of Pathology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Etty Cortes
- Department of Pathology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jean Paul Vonsattel
- Department of Pathology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Stanley Fahn
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Volkan Okur
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
30
|
Protein Phosphatase 2A (PP2A) mutations in brain function, development, and neurologic disease. Biochem Soc Trans 2021; 49:1567-1588. [PMID: 34241636 DOI: 10.1042/bst20201313] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.
Collapse
|
31
|
Sandal P, Jong CJ, Merrill RA, Song J, Strack S. Protein phosphatase 2A - structure, function and role in neurodevelopmental disorders. J Cell Sci 2021; 134:270819. [PMID: 34228795 DOI: 10.1242/jcs.248187] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.
Collapse
Affiliation(s)
- Priyanka Sandal
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Chian Ju Jong
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jianing Song
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
32
|
Hetzelt KLML, Kerling F, Kraus C, Rauch C, Thiel CT, Winterholler M, Reis A, Zweier C. Early-onset parkinsonism in PPP2R5D-related neurodevelopmental disorder. Eur J Med Genet 2020; 64:104123. [PMID: 33338668 DOI: 10.1016/j.ejmg.2020.104123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022]
Abstract
PPP2R5D-related neurodevelopmental disorder (NDD) is a rare autosomal-dominant disease with developmental delay and mild to severe intellectual disability. So far, fewer than 30 affected individuals with mostly recurrent, de novo missense variants in PPP2R5D were reported. Recently, parkinsonism with an onset between 20 and 40 years was reported in four adult individuals with the same p.(Glu200Lys) variant in PPP2R5D. By trio exome sequencing we now identified the variant p.(Glu198Lys) in a 29 year old woman presenting with typical clinical manifestations of PPP2R5D-related neurodevelopmental disorder and additionally with motor decline and levodopa responsive, early-onset parkinsonism from her mid-twenties on. Accordingly, a clear reduction of dopamine transporter in the striatum on both sides was revealed by brain scintigraphy. Our findings further expand the molecular and clinical spectrum of PPP2R5D-related NDD and confirm the association with parkinsonism in early adulthood. This has marked implications for prognosis of PPP2R5D-related NDDs and for the therapeutic management of motor decline and parkinson-like symptoms in affected individuals.
Collapse
Affiliation(s)
- Katalin L M L Hetzelt
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Frank Kerling
- Department of Neurology, Epilepsy and Movement Disorders Center, Sana-Krankenhaus Rummelsberg, Schwarzenbruck/Nuremberg, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Christophe Rauch
- Department of Neurology, Epilepsy and Movement Disorders Center, Sana-Krankenhaus Rummelsberg, Schwarzenbruck/Nuremberg, Germany
| | - Christian T Thiel
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Martin Winterholler
- Department of Neurology, Epilepsy and Movement Disorders Center, Sana-Krankenhaus Rummelsberg, Schwarzenbruck/Nuremberg, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany.
| |
Collapse
|
33
|
Kim CY, Wirth T, Hubsch C, Németh AH, Okur V, Anheim M, Drouot N, Tranchant C, Rudolf G, Chelly J, Tatton-Brown K, Blauwendraat C, Vonsattel JPG, Cortes E, Alcalay RN, Chung WK. Reply to "PPP2R5D Genetic Mutations and Early Onset Parkinsonism". Ann Neurol 2020; 89:195-196. [PMID: 33098324 DOI: 10.1002/ana.25945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Christine Y Kim
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA.,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Thomas Wirth
- Unit of Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospital, London, UK.,Neurology Department, Strasbourg University Hospitals, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology, INSERM-U964/CNRS-UMR7104/University of Strasbourg, Illkirch-Graffenstaden, France
| | - Cécile Hubsch
- A. de Rothschild Ophthalmological Foundation, Paris, France
| | - Andrea H Németh
- Oxford University Hospitals National Health Service Trust and University of Oxford, Oxford, UK
| | - Volkan Okur
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mathieu Anheim
- Neurology Department, Strasbourg University Hospitals, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology, INSERM-U964/CNRS-UMR7104/University of Strasbourg, Illkirch-Graffenstaden, France.,Strasbourg Federation of Translational Medicine, Strasbourg, France
| | - Nathalie Drouot
- Institute of Genetics and Molecular and Cellular Biology, INSERM-U964/CNRS-UMR7104/University of Strasbourg, Illkirch-Graffenstaden, France
| | - Christine Tranchant
- Neurology Department, Strasbourg University Hospitals, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology, INSERM-U964/CNRS-UMR7104/University of Strasbourg, Illkirch-Graffenstaden, France.,Strasbourg Federation of Translational Medicine, Strasbourg, France
| | - Gabrielle Rudolf
- Neurology Department, Strasbourg University Hospitals, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology, INSERM-U964/CNRS-UMR7104/University of Strasbourg, Illkirch-Graffenstaden, France.,Strasbourg Federation of Translational Medicine, Strasbourg, France
| | - Jamel Chelly
- Neurology Department, Strasbourg University Hospitals, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology, INSERM-U964/CNRS-UMR7104/University of Strasbourg, Illkirch-Graffenstaden, France.,Genetic Diagnostic Laboratory, Strasbourg University Hospitals, Strasbourg, France
| | - Katrina Tatton-Brown
- St George's University Hospitals National Health Service Foundation Trust, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jean Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Etty Cortes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Walker IM, Riboldi GM, Drummond P, Saade-Lemus S, Martin-Saavedra JS, Frucht S, Bardakjian TM, Gonzalez-Alegre P, Deik A. PPP2R5D Genetic Mutations and Early-Onset Parkinsonism. Ann Neurol 2020; 89:194-195. [PMID: 33098144 DOI: 10.1002/ana.25943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Ian M Walker
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Giulietta M Riboldi
- Department of Neurology, Fresco Institute for Parkinson's and Movement Disorders, New York University School of Medicine, New York, NY, USA
| | - Patrick Drummond
- Department of Neurology, Fresco Institute for Parkinson's and Movement Disorders, New York University School of Medicine, New York, NY, USA
| | - Sandra Saade-Lemus
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Juan Sebastian Martin-Saavedra
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Frucht
- Department of Neurology, Fresco Institute for Parkinson's and Movement Disorders, New York University School of Medicine, New York, NY, USA
| | - Tanya M Bardakjian
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Pedro Gonzalez-Alegre
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Andres Deik
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|