1
|
Macdonald-Laurs E, Leventer RJ. ILAE genetic literacy series: Focal cortical dysplasia. Epileptic Disord 2024. [PMID: 39641771 DOI: 10.1002/epd2.20308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024]
Abstract
Focal cortical dysplasia (FCD) is a common cause of drug-resistant focal epilepsy in children and young adults and is often surgically remediable. The genetics of FCD are increasingly understood due to the ability to perform genomic testing including deep sequencing of resected FCD tissue specimens. There is clear evidence that FCD type II occurs secondary to both germline and somatic mTOR pathway variants, while emerging literature supports the role of SLC35A2, a glycosylation gene, in mild malformation of cortical development with oligodendroglial hyperplasia and epilepsy (MOGHE). Herein, we provide a review of FCDs focusing on their clinical phenotypes, genetic basis, and management considerations when performing genetic testing in this patient group.
Collapse
Affiliation(s)
- Emma Macdonald-Laurs
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Richard J Leventer
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Hom KL, Illapani VSP, Xie H, Oluigbo C, Vezina LG, Gaillard WD, Gholipour T, Cohen NT. Application of preoperative MRI lesion identification algorithm in pediatric and young adult focal cortical dysplasia-related epilepsy. Seizure 2024; 122:64-70. [PMID: 39368329 PMCID: PMC11540716 DOI: 10.1016/j.seizure.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the performance and generalizability of an automated, interpretable surface-based MRI classifier for the detection of focal cortical dysplasia. METHODS This was a retrospective cohort incorporating MRIs from the epilepsy surgery (FCD and MRI-negative) and neuroimaging (healthy controls) databases at Children's National Hospital (CNH), and a publicly-available FCD Type II dataset from Bonn, Germany. Clinical characteristics and outcomes were abstracted from patient records and/or existing databases. Subjects were included if they had 3T epilepsy-protocol MRI. Manually-segmented FCD masks were compared to the automated masks generated by the Multi-centre Epilepsy Lesion Detection (MELD) FCD detection algorithm. Sensitivity/specificity were calculated. RESULTS From CNH, 39 FCD pharmacoresistant epilepsy (PRE) patients, 19 healthy controls, and 19 MRI-negative patients were included. From Bonn, 85 FCD Type II were included, of which 68 passed preprocessing. MELD had varying performance (sensitivity) in these datasets: CNH FCD-PRE (54 %); Bonn (68 %); MRI-negative (44 %). In multivariate regression, FCD Type IIB pathology predicted higher chance of MELD automated lesion detection. All four patients who underwent resection/ablation of MELD-identified clusters achieved Engel I outcome. SIGNIFICANCE We validate the performance of MELD automated, interpretable FCD classifier in a diverse pediatric cohort with FCD-PRE. We also demonstrate the classifier has relatively good performance in an independent FCD Type II cohort with pediatric-onset epilepsy, as well as simulated real-world value in a pediatric population with MRI-negative PRE.
Collapse
Affiliation(s)
- Kara L Hom
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, United States
| | - Venkata Sita Priyanka Illapani
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, United States
| | - Hua Xie
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, United States
| | - Chima Oluigbo
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, United States
| | - L Gilbert Vezina
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, United States
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, United States
| | - Taha Gholipour
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, United States; Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Nathan T Cohen
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, United States.
| |
Collapse
|
3
|
Xie H, Illapani VSP, Vezina LG, Gholipour T, Oluigbo C, Gaillard WD, Cohen NT. Mapping Functional Connectivity Signatures of Pharmacoresistant Focal Cortical Dysplasia-Related Epilepsy. Ann Neurol 2024. [PMID: 39192492 DOI: 10.1002/ana.27069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE To determine common network alterations in focal cortical dysplasia pharmacoresistant epilepsy (FCD-PRE) using functional connectivity analysis of resting-state functional magnetic resonance imaging (rsfMRI). METHODS This is a retrospective imaging cohort from Children's National Hospital (Washington, DC, USA) from January, 2011 to January, 2022. Patients with 3-T MRI-confirmed FCD-PRE underwent rsfMRI as part of routine clinical care. Patients were included if they were age 5-22 years at the time of the scan, and had a minimum of 18 months of follow-up. Healthy, typically-developing controls were included from Children's National Hospital (n = 16) and matched from Human Connectome Project-Development public dataset (n = 100). RESULTS A total of 42 FCD-PRE patients (20 M:22 F, aged 14.2 ± 4.1 years) and 116 healthy controls (56 M:60 F, aged 13.7 ± 3.3 years) with rsfMRI were included. Seed-based functional connectivity maps were generated for each FCD, and each seed was used to generate a patient-specific z-scored connectivity map on 116 controls. FCD-PRE patients had mutual altered connectivity in regions of dorsal attention, default mode, and control networks. Functional connectivity was diminished within the FCD dominant functional network, as well as in homotopic regions. Cluster specific connectivity patterns varied by pathological subtype. Higher FCD connectivity to the limbic network was associated with increased odds of Engel I outcome. INTERPRETATION This study demonstrates diminished functional connectivity patterns in FCD-PRE, which may represent a neuromarker for the disease, independent of FCD location, involving the dorsal attention, default mode, and control functional networks. Higher connectivity to the limbic network is associated with a seizure-free outcome. Future multicenter, prospective studies are needed to allow for much earlier detection of signatures of treatment-resistant epilepsy. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Hua Xie
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Venkata Sita Priyanka Illapani
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - L Gilbert Vezina
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Taha Gholipour
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Chima Oluigbo
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Nathan T Cohen
- Center for Neuroscience Research, Children's National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
4
|
Bower MR. Review: seizure-related consolidation and the network theory of epilepsy. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1430934. [PMID: 39238837 PMCID: PMC11374659 DOI: 10.3389/fnetp.2024.1430934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024]
Abstract
Epilepsy is a complex, multifaceted disease that affects patients in several ways in addition to seizures, including psychological, social, and quality of life issues, but epilepsy is also known to interact with sleep. Seizures often occur at the boundary between sleep and wake, patients with epilepsy often experience disrupted sleep, and the rate of inter-ictal epileptiform discharges increases during non-REM sleep. The Network Theory of Epilepsy did not address a role for sleep, but recent emphasis on the interaction between epilepsy and sleep suggests that post-seizure sleep may also be involved in the process by which seizures arise and become more severe with time ("epileptogenesis") by co-opting processes related to the formation of long-term memories. While it is generally acknowledged that recurrent seizures arise from the aberrant function of neural circuits, it is possible that the progression of epilepsy is aided by normal, physiological function of neural circuits during sleep that are driven by pathological signals. Studies recording multiple, single neurons prior to spontaneous seizures have shown that neural assemblies activated prior to the start of seizures were reactivated during post-seizure sleep, similar to the reactivation of behavioral neural assemblies, which is thought to be involved in the formation of long-term memories, a process known as Memory Consolidation. The reactivation of seizure-related neural assemblies during sleep was thus described as being a component of Seizure-Related Consolidation (SRC). These results further suggest that SRC may viewed as a network-related aspect of epilepsy, even in those seizures that have anatomically restricted neuroanatomical origins. As suggested by the Network Theory of Epilepsy as a means of interfering with ictogenesis, therapies that interfered with SRC may provide some anti-epileptogenic therapeutic benefit, even if the interference targeted structures that were not involved originally in the seizure. Here, we show how the Network Theory of Epilepsy can be expanded to include neural plasticity mechanisms associated with learning by providing an overview of Memory Consolidation, the mechanisms thought to underlie MC, their relation to Seizure-Related Consolidation, and suggesting novel, anti-epileptogenic therapies targeting interference with network activation in epilepsy following seizures during post-seizure sleep.
Collapse
Affiliation(s)
- Mark R Bower
- Department of Neurology, Yale University, New Haven, CT, United States
| |
Collapse
|
5
|
Wagstyl K, Kobow K, Casillas-Espinosa PM, Cole AJ, Jiménez-Jiménez D, Nariai H, Baulac S, O'Brien T, Henshall DC, Akman O, Sankar R, Galanopoulou AS, Auvin S. WONOEP 2022: Neurotechnology for the diagnosis of epilepsy. Epilepsia 2024; 65:2238-2247. [PMID: 38829313 DOI: 10.1111/epi.18028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Epilepsy's myriad causes and clinical presentations ensure that accurate diagnoses and targeted treatments remain a challenge. Advanced neurotechnologies are needed to better characterize individual patients across multiple modalities and analytical techniques. At the XVIth Workshop on Neurobiology of Epilepsy: Early Onset Epilepsies: Neurobiology and Novel Therapeutic Strategies (WONOEP 2022), the session on "advanced tools" highlighted a range of approaches, from molecular phenotyping of genetic epilepsy models and resected tissue samples to imaging-guided localization of epileptogenic tissue for surgical resection of focal malformations. These tools integrate cutting edge research, clinical data acquisition, and advanced computational methods to leverage the rich information contained within increasingly large datasets. A number of common challenges and opportunities emerged, including the need for multidisciplinary collaboration, multimodal integration, potential ethical challenges, and the multistage path to clinical translation. Despite these challenges, advanced epilepsy neurotechnologies offer the potential to improve our understanding of the underlying causes of epilepsy and our capacity to provide patient-specific treatment.
Collapse
Affiliation(s)
- Konrad Wagstyl
- School of Biomedical Engineering & Imaging Science, King's College London, London, UK
- Developmental Neurosciences, UCL Great Ormond Street for Child Health, UCL, London, UK
| | - Katja Kobow
- Institute of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Pablo M Casillas-Espinosa
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Andrew J Cole
- MGH Epilepsy Service, Division of Clinical Neurophysiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diego Jiménez-Jiménez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Medical Center, Los Angeles, California, USA
| | - Stéphanie Baulac
- Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Terence O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - David C Henshall
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ozlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, Los Angeles, California, USA
- UCLA Children's Discovery and Innovation Institute, California, Los Angeles, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stéphane Auvin
- Université Paris-Cité, INSERM NeuroDiderot, Paris, France
- Pediatric Neurology Department, APHP, Robert Debré University Hospital, CRMR Epilepsies Rares, EpiCARE member, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
6
|
Macdonald-Laurs E, Warren AEL, Leventer RJ, Harvey AS. Why did my seizures start now? Influences of lesion connectivity and genetic etiology on age at seizure onset in focal epilepsy. Epilepsia 2024; 65:1644-1657. [PMID: 38488289 DOI: 10.1111/epi.17947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Patients with focal, lesional epilepsy present with seizures at variable ages. Larger lesion size and overlap with sensorimotor or default mode network (DMN) have been associated with younger age at seizure onset in cohorts with mixed types of focal cortical dysplasia (FCD). Here, we studied determinants of age at seizure onset in patients with bottom-of-sulcus dysplasia (BOSD), a discrete type of FCD with highly localized epileptogenicity. METHODS Eighty-four patients (77% operated) with BOSD were studied. Demographic, histopathologic, and genetic findings were recorded. BOSD volume and anatomical, primary versus association, rostral versus caudal, and functional network locations were determined. Normative functional connectivity analyses were performed using each BOSD as a region of interest in resting-state functional magnetic resonance imaging data of healthy children. Variables were correlated with age at seizure onset. RESULTS Median age at seizure onset was 5.4 (interquartile range = 2-7.9) years. Of 50 tested patients, 22 had somatic and nine had germline pathogenic mammalian target of rapamycin (mTOR) pathway variants. Younger age at seizure onset was associated with greater BOSD volume (p = .002), presence of a germline pathogenic variant (p = .04), DMN overlap (p = .04), and increased functional connectivity with the DMN (p < .05, false discovery rate corrected). Location within sensorimotor cortex and networks was not associated with younger age at seizure onset in our relatively small but homogenous cohort. SIGNIFICANCE Greater lesion size, pathogenic mTOR pathway germline variants, and DMN connectivity are associated with younger age at seizure onset in small FCD. Our findings strengthen the suggested role of DMN connectivity in the onset of FCD-related focal epilepsy and reveal novel contributions of genetic etiology.
Collapse
Affiliation(s)
- Emma Macdonald-Laurs
- Department of Neurology, Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Aaron E L Warren
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - A Simon Harvey
- Department of Neurology, Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Macdonald-Laurs E, Warren AEL, Francis P, Mandelstam SA, Lee WS, Coleman M, Stephenson SEM, Barton S, D'Arcy C, Lockhart PJ, Leventer RJ, Harvey AS. The clinical, imaging, pathological and genetic landscape of bottom-of-sulcus dysplasia. Brain 2024; 147:1264-1277. [PMID: 37939785 DOI: 10.1093/brain/awad379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/20/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Bottom-of-sulcus dysplasia (BOSD) is increasingly recognized as a cause of drug-resistant, surgically-remediable, focal epilepsy, often in seemingly MRI-negative patients. We describe the clinical manifestations, morphological features, localization patterns and genetics of BOSD, with the aims of improving management and understanding pathogenesis. We studied 85 patients with BOSD diagnosed between 2005-2022. Presenting seizure and EEG characteristics, clinical course, genetic findings and treatment response were obtained from medical records. MRI (3 T) and 18F-FDG-PET scans were reviewed systematically for BOSD morphology and metabolism. Histopathological analysis and tissue genetic testing were performed in 64 operated patients. BOSD locations were transposed to common imaging space to study anatomical location, functional network localization and relationship to normal MTOR gene expression. All patients presented with stereotyped focal seizures with rapidly escalating frequency, prompting hospitalization in 48%. Despite 42% patients having seizure remissions, usually with sodium channel blocking medications, most eventually became drug-resistant and underwent surgery (86% seizure-free). Prior developmental delay was uncommon but intellectual, language and executive dysfunction were present in 24%, 48% and 29% when assessed preoperatively, low intellect being associated with greater epilepsy duration. BOSDs were missed on initial MRI in 68%, being ultimately recognized following repeat MRI, 18F-FDG-PET or image postprocessing. MRI features were grey-white junction blurring (100%), cortical thickening (91%), transmantle band (62%), increased cortical T1 signal (46%) and increased subcortical FLAIR signal (26%). BOSD hypometabolism was present on 18F-FDG-PET in 99%. Additional areas of cortical malformation or grey matter heterotopia were present in eight patients. BOSDs predominated in frontal and pericentral cortex and related functional networks, mostly sparing temporal and occipital cortex, and limbic and visual networks. Genetic testing yielded pathogenic mTOR pathway variants in 63% patients, including somatic MTOR variants in 47% operated patients and germline DEPDC5 or NPRL3 variants in 73% patients with familial focal epilepsy. BOSDs tended to occur in regions where the healthy brain normally shows lower MTOR expression, suggesting these regions may be more vulnerable to upregulation of MTOR activity. Consistent with the existing literature, these results highlight (i) clinical features raising suspicion of BOSD; (ii) the role of somatic and germline mTOR pathway variants in patients with sporadic and familial focal epilepsy associated with BOSD; and (iii) the role of 18F-FDG-PET alongside high-field MRI in detecting subtle BOSD. The anatomical and functional distribution of BOSDs likely explain their seizure, EEG and cognitive manifestations and may relate to relative MTOR expression.
Collapse
Affiliation(s)
- Emma Macdonald-Laurs
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Aaron E L Warren
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Medicine (Austin Health), The University of Melbourne, Heidelberg 3084, Australia
| | - Peter Francis
- Department of Medical Imaging, The Royal Children's Hospital, Parkville 3052, Australia
| | - Simone A Mandelstam
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Medical Imaging, The Royal Children's Hospital, Parkville 3052, Australia
| | - Wei Shern Lee
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Matthew Coleman
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Sarah E M Stephenson
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Sarah Barton
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Colleen D'Arcy
- Department of Pathology, The Royal Children's Hospital, Parkville 3052, Australia
| | - Paul J Lockhart
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Richard J Leventer
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - A Simon Harvey
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| |
Collapse
|
8
|
Zhao Y, Lin J, Qi X, Cao D, Zhu F, Chen L, Tan Z, Mo T, Zeng H. To explore the potential mechanisms of cognitive impairment in children with MRI-negative pharmacoresistant epilepsy due to focal cortical dysplasia: A pilot study from gray matter structure view. Heliyon 2024; 10:e26609. [PMID: 38404806 PMCID: PMC10884915 DOI: 10.1016/j.heliyon.2024.e26609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
Objectives To investigate the characteristics of brain structure in children with focal cortical dysplasia (FCD)-induced pharmacoresistant epilepsy, and explore the potential mechanisms of cognitive impairment from the view of gray matter alteration. Methods 25 pharmacoresistant pediatric patients with pathologically confirmed focal cortical dysplasia (FCD), and 25 gender-matched healthy controls were included in this study. 3.0T MRI data and intelligence tests using the Wechsler Intelligence Scale for Children-Forth Edition (WISC-IV) were generated for all subjects. Voxel-based morphometry (VBM)-diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) and surface-based morphometry (SBM) analyses were performed to analyze gray matter volume and cortical structure. Two-sample t-tests were used to compare the differences in gray matter volume (P<0.05, FWE) and cortical thickness (P<0.001, FWE) between the two groups. Also, the Spearman rank correlation analyses were employed to determine the relationship between structural alterations and neuropsychological results. Results The WISC-IV scores of the FCD group were significantly lower than those of the HC group in terms of full-scale intelligence quotient (FSIQ), verbal comprehension index (VCI), perceptual reasoning index (PRI), working memory index (WMI), and processing speed index (PSI) (all P<0.01). Compared with the HC group, in the FCD group, the gray matter volume (GMV) reduced significantly in the left cerebellum_8, cerebellum_Crus2, and bilateral thalamus (P<0.05, FWE); the GMV increased in the bilateral medial frontal gyrus, right precuneus, and left inferior temporal gyrus (P<0.05, FWE), and the cortical thickness increased in the bilateral frontal, parietal, and temporal areas (P<0.001, FWE). Correlation analyses showed that the age of seizure onset had positive correlations with the WISC-IV scores significantly. Meanwhile, the cortex thicknesses of the left pars opercularis gyrus, left middle temporal gyrus, and right inferior temporal gyrus had negative correlations with the WISC-IV scores significantly. Conclusion FCD patients showed subtle structural abnormalities in multiple brain regions, with significant involvement of the primary visual cortex and language function cortex. And we also demonstrated a crucial correlation between gray matter structural alteration and cognitive impairment.
Collapse
Affiliation(s)
- Yilin Zhao
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Jieqiong Lin
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xinxin Qi
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
- China Medical University, Shenyang, China
| | - Dezhi Cao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Fengjun Zhu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Li Chen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Zeshi Tan
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Tong Mo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
9
|
Cohen NT, Xie H, Gholipour T, Gaillard WD. A scoping review of the functional magnetic resonance imaging-based functional connectivity of focal cortical dysplasia-related epilepsy. Epilepsia 2023; 64:3130-3142. [PMID: 37731142 DOI: 10.1111/epi.17775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Focal cortical dysplasia (FCD) is the most frequent etiology of operable pharmacoresistant epilepsy in children. There is burgeoning evidence that FCD-related epilepsy is a disorder that involves distributed brain networks. Functional magnetic resonance imaging (fMRI) is a tool that allows one to infer neuronal activity and to noninvasively map whole-brain functional networks. Despite its relatively widespread availability at most epilepsy centers, the clinical application of fMRI remains mostly task-based in epilepsy. Another approach is to map and characterize cortical functional networks of individuals using resting state fMRI (rsfMRI). The focus of this scoping review is to summarize the evidence to date of investigations of the network basis of FCD-related epilepsy, and to highlight numerous potential future applications of rsfMRI in the exploration of diagnostic and therapeutic strategies for FCD-related epilepsy. There are numerous studies demonstrating a global disruption of cortical functional networks in FCD-related epilepsy. The underlying pathological subtypes of FCD influence overall functional network patterns. There is evidence that cortical functional network mapping may help to predict postsurgical seizure outcomes, highlighting the translational potential of these findings. Additionally, several studies emphasize the important effect of FCD interaction with cortical networks and the expression of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Nathan T Cohen
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Hua Xie
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Taha Gholipour
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, George Washington University Epilepsy Center, Washington, District of Columbia, USA
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Cohen NT, Chang P, Gholipour T, Oluigbo C, Vezina LG, Xie H, Zhang A, Gaillard WD. Limbic network co-localization predicts pharmacoresistance in dysplasia-related epilepsy. Ann Clin Transl Neurol 2023; 10:2161-2165. [PMID: 37700505 PMCID: PMC10646997 DOI: 10.1002/acn3.51892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
To evaluate the role of focal cortical dysplasia co-localization to cortical functional networks in the development of pharmacoresistance. One hundred thirty-six focal cortical dysplasia patients with 3.0 T or 1.5 T MRI were identified from clinical databases at Children's National Hospital. Clinico-radio-pathologic factors and network co-localization were determined. Using binomial logistic regression, limbic network co-localization (odds ratio 4.164 95% confidence interval 1.02-17.08, p = 0.048), and focal to bilateral tonic-clonic seizures (4.82, 1.30-18.03, p = 0.019) predicted pharmacoresistance. These findings provide clinicians with markers to identify patients with focal cortical dysplasia-related epilepsy at high risk of developing pharmacoresistance and should facilitate earlier epilepsy surgical evaluation.
Collapse
Affiliation(s)
- Nathan T. Cohen
- Center for Neuroscience ResearchChildren's National Hospital, The George Washington University School of MedicineWashingtonDCUSA
| | - Phat Chang
- Center for Neuroscience ResearchChildren's National Hospital, The George Washington University School of MedicineWashingtonDCUSA
| | - Taha Gholipour
- Center for Neuroscience ResearchChildren's National Hospital, The George Washington University School of MedicineWashingtonDCUSA
| | - Chima Oluigbo
- Center for Neuroscience ResearchChildren's National Hospital, The George Washington University School of MedicineWashingtonDCUSA
| | - L. Gilbert Vezina
- Center for Neuroscience ResearchChildren's National Hospital, The George Washington University School of MedicineWashingtonDCUSA
| | - Hua Xie
- Center for Neuroscience ResearchChildren's National Hospital, The George Washington University School of MedicineWashingtonDCUSA
| | - Anqing Zhang
- Division of Biostatistics and Study MethodologyChildren's National Research InstituteWashingtonDCUSA
| | - William D. Gaillard
- Center for Neuroscience ResearchChildren's National Hospital, The George Washington University School of MedicineWashingtonDCUSA
| |
Collapse
|
11
|
Chang P, Xie H, Illapani VSP, You X, Anwar T, Pasupuleti A, Vu TA, Vezina LG, Gholipour T, Oluigbo CO, Zhang A, Gaillard WD, Cohen NT. Focal to bilateral tonic-clonic seizures predict pharmacoresistance in focal cortical dysplasia-related epilepsy. Epilepsia 2023; 64:2434-2442. [PMID: 37349955 PMCID: PMC10529443 DOI: 10.1111/epi.17700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) is the most common etiology of surgically-remediable epilepsy in children. Eighty-seven percent of patients with FCD develop epilepsy (75% is pharmacoresistant epilepsy [PRE]). Focal to bilateral tonic-clonic (FTBTC) seizures are associated with worse surgical outcomes. We hypothesized that children with FCD-related epilepsy with FTBTC seizures are more likely to develop PRE due to lesion interaction with restricted cortical neural networks. METHODS Patients were selected retrospectively from radiology and surgical databases from Children's National Hospital. INCLUSION CRITERIA 3T magnetic resonance imaging (MRI)-confirmed FCD from January 2011 to January 2020; ages 0 days to 22 years at MRI; and 18 months of documented follow-up. FCD dominant network (Yeo 7-network parcellation) was determined. Association of FTBTC seizures with epilepsy severity, surgical outcome, and dominant network was tested. Binomial regression was used to evaluate predictors (FTBTC seizures, age at seizure onset, pathology, hemisphere, lobe) of pharmacoresistance and Engel outcome. Regression was used to evaluate predictors (age at seizure onset, pathology, lobe, percentage default mode network [DMN] overlap) of FTBTC seizures. RESULTS One hundred seventeen patients had a median age at seizure onset of 3.00 years (interquartile range [IQR] .42-5.59 years). Eighty-three patients had PRE (71%); 34 had pharmacosensitive epilepsy (PSE) (29%). Twenty patients (17%) had FTBTC seizures. Seventy-three patients underwent epilepsy surgery. Multivariate regression showed that FTBTC seizures are associated with an increased risk of PRE (odds ratio [OR] 6.41, 95% confidence interval [CI] 1.21-33.98, p = .02). FCD hemisphere/lobe was not associated with PRE. Percentage DMN overlap predicts FTBTC seizures. Seventy-two percent (n = 52) overall and 53% (n = 9) of patients with FTBTC seizures achieved Engel class I outcome. SIGNIFICANCE In a heterogeneous population of surgical and non-operated patients with FCD-related epilepsy, the presence of FTBTC seizures is associated with a tremendous risk of PRE. This finding is a recognizable marker to help neurologists identify those children with FCD-related epilepsy at high risk of PRE and can flag patients for earlier consideration of potentially curative surgery. The FCD-dominant network also contributes to FTBTC seizure clinical expression.
Collapse
Affiliation(s)
- Phat Chang
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Hua Xie
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Venkata Sita Priyanka Illapani
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Xiaozhen You
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Tayyba Anwar
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Archana Pasupuleti
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Thuy-Anh Vu
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - L. Gilbert Vezina
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Taha Gholipour
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Chima O. Oluigbo
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Anqing Zhang
- Division of Biostatistics and Study Methodology, Children’s National Research Institute, Washington, DC
| | - William Davis Gaillard
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| | - Nathan T. Cohen
- Center for Neuroscience Research, Children’s National Hospital, The George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
12
|
Lee HM, Hong SJ, Gill R, Caldairou B, Wang I, Zhang JG, Deleo F, Schrader D, Bartolomei F, Guye M, Cho KH, Barba C, Sisodiya S, Jackson G, Hogan RE, Wong-Kisiel L, Cascino GD, Schulze-Bonhage A, Lopes-Cendes I, Cendes F, Guerrini R, Bernhardt B, Bernasconi N, Bernasconi A. Multimodal mapping of regional brain vulnerability to focal cortical dysplasia. Brain 2023; 146:3404-3415. [PMID: 36852571 PMCID: PMC10393418 DOI: 10.1093/brain/awad060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental malformation and a common cause of surgically treated drug-resistant epilepsy. While clinical observations suggest frequent occurrence in the frontal lobe, mechanisms for such propensity remain unexplored. Here, we hypothesized that cortex-wide spatial associations of FCD distribution with cortical cytoarchitecture, gene expression and organizational axes may offer complementary insights into processes that predispose given cortical regions to harbour FCD. We mapped the cortex-wide MRI distribution of FCDs in 337 patients collected from 13 sites worldwide. We then determined its associations with (i) cytoarchitectural features using histological atlases by Von Economo and Koskinas and BigBrain; (ii) whole-brain gene expression and spatiotemporal dynamics from prenatal to adulthood stages using the Allen Human Brain Atlas and PsychENCODE BrainSpan; and (iii) macroscale developmental axes of cortical organization. FCD lesions were preferentially located in the prefrontal and fronto-limbic cortices typified by low neuron density, large soma and thick grey matter. Transcriptomic associations with FCD distribution uncovered a prenatal component related to neuroglial proliferation and differentiation, likely accounting for the dysplastic makeup, and a postnatal component related to synaptogenesis and circuit organization, possibly contributing to circuit-level hyperexcitability. FCD distribution showed a strong association with the anterior region of the antero-posterior axis derived from heritability analysis of interregional structural covariance of cortical thickness, but not with structural and functional hierarchical axes. Reliability of all results was confirmed through resampling techniques. Multimodal associations with cytoarchitecture, gene expression and axes of cortical organization indicate that prenatal neurogenesis and postnatal synaptogenesis may be key points of developmental vulnerability of the frontal lobe to FCD. Concordant with a causal role of atypical neuroglial proliferation and growth, our results indicate that FCD-vulnerable cortices display properties indicative of earlier termination of neurogenesis and initiation of cell growth. They also suggest a potential contribution of aberrant postnatal synaptogenesis and circuit development to FCD epileptogenicity.
Collapse
Affiliation(s)
- Hyo M Lee
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
- Center for Neuroscience Imaging, Research Institute for Basic Science, Department of Global Biomedical Engineering, SungKyunKwan University, Suwon, KoreaSuwon, Korea
| | - Ravnoor Gill
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Irene Wang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jian-guo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Francesco Deleo
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Dewi Schrader
- Department of Pediatrics, British Columbia Children’s Hospital, Vancouver, Canada
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, 13005, France
| | - Maxime Guye
- Aix Marseille University, CNRS, CRMBM UMR 7339, Marseille, France
| | - Kyoo Ho Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Carmen Barba
- Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, 50121 Florence, Italy
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Graeme Jackson
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Victoria, Australia
| | - R Edward Hogan
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP) and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas SP, Brazil
| | - Fernando Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas SP, Brazil
| | - Renzo Guerrini
- Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, 50121 Florence, Italy
| | - Boris Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
13
|
Fokale kortikale Dysplasie: neuronale Netzwerke beeinflussen
Krankheitsbeginn. FORTSCHRITTE DER NEUROLOGIE · PSYCHIATRIE 2023. [DOI: 10.1055/a-1892-0711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Die Therapieoptionen von Epilepsien haben sich seit den ersten Ansätzen
stark weiterentwickelt. Bei verschiedenen Typen der Epilepsie, sowie auch bei
Syndromen mit epileptischen Anfällen, sind noch viele pathogenetische
Fragen unbeantwortet – die aber vielleicht therapeutische Optionen
aufzeigen könnten. Die Autoren dieser Studie stellen die Frage, wie
Entstehungsprozesse epileptogener Areale und funktionelle neuronale Netzwerke
wechselwirken.
Collapse
|