1
|
Lavrova A, Pham NTT, Reid RI, Boeve BF, Knopman DS, Petersen RC, Nguyen AT, Ross Reichard R, Dickson DW, Jack CR, Whitwell JL, Josephs KA. Relation of Alzheimer's disease-related TDP-43 proteinopathy to metrics from diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Neurobiol Aging 2025; 150:97-108. [PMID: 40088623 DOI: 10.1016/j.neurobiolaging.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) deposition is linked to regional brain atrophy in Alzheimer's disease (AD), but diffusion changes associated with AD-related TDP-43 proteinopathy remain underexplored. This study evaluates the potential of diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) as in vivo markers for detecting TDP-43 proteinopathy in AD. We analyzed DTI and NODDI metrics in 49 cases with AD neuropathologic changes, categorized by postmortem TDP-43 status. Diffusion metrics from the temporal lobe gray and white matter regions and key white matter tracts were compared between TDP-43-positive and negative cases. Group differences were significant in the left hippocampus, amygdala, and uncinate fasciculus after adjusting for age, Braak neurofibrillary tangle (NFT) stage and APOE ε4 status. TDP-43-positive cases showed increased mean diffusivity (MD) and altered neurite density index (NDI) and orientation dispersion index (ODI). Area under the receiver operating characteristic curve (AUROC) analysis revealed high predictive accuracy for amygdala ODI (AUC = 0.809, sensitivity = 0.81, specificity = 0.76), hippocampal MD (AUC = 0.763, sensitivity = 0.81, specificity = 0.67), and uncinate fasciculus MD (AUC = 0.782, sensitivity = 0.88, specificity = 0.61). Combined, DTI/NODDI predictors demonstrated stronger discriminative ability (AUC = 0.856, sensitivity = 0.88, specificity = 0.76). These findings suggest that AD-related TDP-43 proteinopathy is associated with specific diffusion changes in the left temporal lobe. DTI and NODDI metrics, particularly MD, NDI, and ODI, may improve the antemortem detection of TDP-43 pathology in AD.
Collapse
Affiliation(s)
- Anna Lavrova
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Robert I Reid
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
2
|
Shahidehpour RK, Nelson PT, Srinivasan S, Yu Z, Bachstetter AD. Assessing Co-Localization of ITM2B With Alzheimer's Disease and Limbic-Predominant Age-Related TDP-43 Encephalopathy Neuropathologic Changes. Neuropathology 2025. [PMID: 40042444 DOI: 10.1111/neup.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Accepted: 02/16/2025] [Indexed: 03/24/2025]
Abstract
Mutations in the Integral membrane protein 2B (ITM2B) gene are linked to the development of familial British and Danish dementias, two relatively early-onset dementia disorders known also to be associated with Tau neurofibrillary tangles (NFTs). However, to date, the involvement of ITM2B in limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC) remains unclear. To address this question, we used brain samples from the University of Kentucky Alzheimer's Disease Research Center community-based autopsy cohort. We investigated the patterns and co-localizations of ITM2B immunohistochemistry in subiculum, CA1, CA2, CA3 and dentate gyrus of the hippocampus from brains with Alzheimer's disease neuropathologic changes (ADNC), LATE-NC, and comorbid ADNC+LATE-NC, as well as low-pathology controls (n = 4 per disease state). There was frequent co-localization between ITM2B protein and intracellular Tau pathology in ADNC; however, there was a far weaker rate of co-localization between ITM2B and TDP-43 pathology. There also was, as previously described, an association between ITM2B immunostaining and neuritic-appearing amyloid plaques. Additionally, co-localization of intracellular ITM2B pathology with Thioflavin-S in NFTs suggested a potential role for ITM2B in marking neurons undergoing transition from relatively healthy (early NFT-bearing cells) to more severely affected (later NFT-bearing) cellular disease states. This study indicates that ITM2B has a relatively specific pattern of involvement in Tau-related neurodegeneration and in neuritic amyloid plaques, while implying minimal, if any, role for ITM2B in the synergistic relationship between Tau and TDP-43 pathologies.
Collapse
Affiliation(s)
- Ryan K Shahidehpour
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, Kentucky, USA
| | - Sukanya Srinivasan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Zhong Yu
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Yoshida K, Forrest SL, Ichimata S, Tanaka H, Kon T, Kovacs GG. Co-pathologies modify hippocampal protein accumulation patterns in neurodegenerative diseases. Alzheimers Dement 2025; 21:e14355. [PMID: 39711489 PMCID: PMC11782183 DOI: 10.1002/alz.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Limited research has extensively analyzed neurodegenerative disease-related protein deposition patterns in the hippocampus. METHODS This study examined the distribution of proteins in hippocampal subregions across major neurodegenerative diseases and explored their relation to each other. The area density of phosphorylated tau (p-tau), amyloid beta (Aβ), α-synuclein, and phosphorylated TDP-43 protein deposits together with pyramidal cell density in each hippocampal subregion, including CA1-4, prosubiculum (ProS), and subiculum was assessed in 166 cases encompassing various neurodegenerative diseases. RESULTS Alzheimer's disease-associated p-tau predominated in ProS, Aβ in the CA1, and Lewy body-related α-synuclein in the CA2. The area density of protein deposits increased with the pathological stage until a peak, then decreased in cases with high pathology stages along with pyramidal cell density. Comorbid protein pathology influenced protein deposition patterns. DISCUSSION This comprehensive evaluation reveals characteristic neurodegenerative disease-related protein accumulation patterns in hippocampal subregions modified by co-pathologies. HIGHLIGHTS Alzheimer's disease-related phosphorylated tau predominates in the prosubiculum. Amyloid beta predominates in the CA1 and Lewy body-related α-synuclein in the CA2. The area density of protein deposition increases with the disease stage up to a peak. In the high pathology stage, protein deposition and pyramidal cell density decreases. Comorbid protein pathology affects the pattern of protein accumulation.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Department of Legal MedicineGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Shelley L. Forrest
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Laboratory Medicine Program & Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Department of NeurologyDementia Research CentreMacquarie Medical SchoolFaculty of MedicineHealth and Human SciencesMacquarie UniversitySydneyAustralia
| | - Shojiro Ichimata
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Department of Legal MedicineGraduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
| | - Hidetomo Tanaka
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
| | - Tomoya Kon
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Graduate School of MedicineHirosaki UniversityHirosakiJapan
| | - Gabor G. Kovacs
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Laboratory Medicine Program & Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
- Department of NeurologyDementia Research CentreMacquarie Medical SchoolFaculty of MedicineHealth and Human SciencesMacquarie UniversitySydneyAustralia
| |
Collapse
|
4
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
5
|
Denning AE, Ittyerah R, Levorse LM, Sadeghpour N, Athalye C, Chung E, Ravikumar S, Dong M, Duong MT, Li Y, Ilesanmi A, Sreepada LP, Sabatini P, Lowe M, Bahena A, Zablah J, Spencer BE, Watanabe R, Kim B, Sørensen MH, Khandelwal P, Brown C, Hrybouski S, Xie SX, de Flores R, Robinson JL, Schuck T, Ohm DT, Arezoumandan S, Porta S, Detre JA, Insausti R, Wisse LEM, Das SR, Irwin DJ, Lee EB, Wolk DA, Yushkevich PA. Association of quantitative histopathology measurements with antemortem medial temporal lobe cortical thickness in the Alzheimer's disease continuum. Acta Neuropathol 2024; 148:37. [PMID: 39227502 PMCID: PMC11371872 DOI: 10.1007/s00401-024-02789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
The medial temporal lobe (MTL) is a hotspot for neuropathology, and measurements of MTL atrophy are often used as a biomarker for cognitive decline associated with neurodegenerative disease. Due to the aggregation of multiple proteinopathies in this region, the specific relationship of MTL atrophy to distinct neuropathologies is not well understood. Here, we develop two quantitative algorithms using deep learning to measure phosphorylated tau (p-tau) and TDP-43 (pTDP-43) pathology, which are both known to accumulate in the MTL and are associated with MTL neurodegeneration. We focus on these pathologies in the context of Alzheimer's disease (AD) and limbic predominant age-related TDP-43 encephalopathy (LATE) and apply our deep learning algorithms to distinct histology sections, on which MTL subregions were digitally annotated. We demonstrate that both quantitative pathology measures show high agreement with expert visual ratings of pathology and discriminate well between pathology stages. In 140 cases with antemortem MR imaging, we compare the association of semi-quantitative and quantitative postmortem measures of these pathologies in the hippocampus with in vivo structural measures of the MTL and its subregions. We find widespread associations of p-tau pathology with MTL subregional structural measures, whereas pTDP-43 pathology had more limited associations with the hippocampus and entorhinal cortex. Quantitative measurements of p-tau pathology resulted in a significantly better model of antemortem structural measures than semi-quantitative ratings and showed strong associations with cortical thickness and volume. By providing a more granular measure of pathology, the quantitative p-tau measures also showed a significant negative association with structure in a severe AD subgroup where semi-quantitative ratings displayed a ceiling effect. Our findings demonstrate the advantages of using quantitative neuropathology to understand the relationship of pathology to structure, particularly for p-tau, and motivate the use of quantitative pathology measurements in future studies.
Collapse
Affiliation(s)
- Amanda E Denning
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ranjit Ittyerah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M Levorse
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Chinmayee Athalye
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Eunice Chung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sadhana Ravikumar
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mengjin Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Tran Duong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ademola Ilesanmi
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lasya P Sreepada
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Sabatini
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - MaKayla Lowe
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandra Bahena
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamila Zablah
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara E Spencer
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryohei Watanabe
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Boram Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Maja Højvang Sørensen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Pulkit Khandelwal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Brown
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin de Flores
- UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, INSERM, Caen-Normandie University, GIP Cyceron, Caen, France
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa Schuck
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel T Ohm
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanaz Arezoumandan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo Insausti
- Human Neuroanatomy Lab, University of Castilla La Mancha, Albacete, Spain
| | - Laura E M Wisse
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sandhitsu R Das
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, Institute On Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Chang K, Ling JP, Redding-Ochoa J, An Y, Li L, Dean SA, Blanchard TG, Pylyukh T, Barrett A, Irwin KE, Moghekar A, Resnick SM, Wong PC, Troncoso JC. Loss of TDP-43 splicing repression occurs early in the aging population and is associated with Alzheimer's disease neuropathologic changes and cognitive decline. Acta Neuropathol 2023; 147:4. [PMID: 38133681 DOI: 10.1007/s00401-023-02653-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
LATE-NC, the neuropathologic changes of limbic-predominant age-related TAR DNA-binding protein 43 kDa (TDP-43) encephalopathy are frequently associated with Alzheimer's disease (AD) and cognitive impairment in older adults. The association of TDP-43 proteinopathy with AD neuropathologic changes (ADNC) and its impact on specific cognitive domains are not fully understood and whether loss of TDP-43 function occurs early in the aging brain remains unknown. Here, using a large set of autopsies from the Baltimore Longitudinal Study of Aging (BLSA) and another younger cohort, we were able to study brains from subjects 21-109 years of age. Examination of these brains show that loss of TDP-43 splicing repression, as judged by TDP-43 nuclear clearance and expression of a cryptic exon in HDGFL2, first occurs during the 6th decade, preceding by a decade the appearance of TDP-43+ neuronal cytoplasmic inclusions (NCIs). We corroborated this observation using a monoclonal antibody to demonstrate a cryptic exon-encoded neoepitope within HDGFL2 in neurons exhibiting nuclear clearance of TDP-43. TDP-43 nuclear clearance is associated with increased burden of tau pathology. Age at death, female sex, high CERAD neuritic plaque score, and high Braak neurofibrillary stage significantly increase the odds of LATE-NC. Faster rates of cognitive decline on verbal memory (California Verbal Learning Test immediate recall), visuospatial ability (Card Rotations Test), mental status (MMSE) and semantic fluency (Category Fluency Test) were associated with LATE-NC. Notably, the effects of LATE-NC on verbal memory and visuospatial ability are independent of ADNC. However, the effects of TDP-43 nuclear clearance in absence of NCI on the longitudinal trajectories and levels of cognitive measures are not significant. These results establish that loss of TDP-43 splicing repression is an early event occurring in the aging population during the development of TDP-43 proteinopathy and is associated with increased tau pathology. Furthermore, LATE-NC correlates with high levels of ADNC but also has an impact on specific memory and visuospatial functions in aging that is independent of AD.
Collapse
Affiliation(s)
- Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department and Graduate Institute of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ling Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Office of the Chief Medical Examiner, State of Maryland, Baltimore, MD, 21223, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stephanie A Dean
- Office of the Chief Medical Examiner, State of Maryland, Baltimore, MD, 21223, USA
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tatiana Pylyukh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alexander Barrett
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Katherine E Irwin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|