1
|
Thomas J, Abdallah C, Jaber K, Khweileh M, Aron O, Doležalová I, Gnatkovsky V, Mansilla D, Nevalainen P, Pana R, Schuele S, Singh J, Suller-Marti A, Urban A, Hall J, Dubeau F, Maillard L, Kahane P, Gotman J, Frauscher B. Development of a stereo-EEG based seizure matching system for clinical decision making in epilepsy surgery. J Neural Eng 2024; 21:056025. [PMID: 39178901 DOI: 10.1088/1741-2552/ad7323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Objective.The proportion of patients becoming seizure-free after epilepsy surgery has stagnated. Large multi-center stereo-electroencephalography (SEEG) datasets can allow comparing new patients to past similar cases and making clinical decisions with the knowledge of how cases were treated in the past. However, the complexity of these evaluations makes the manual search for similar patients impractical. We aim to develop an automated system that electrographically and anatomically matches seizures to those in a database. Additionally, since features that define seizure similarity are unknown, we evaluate the agreement and features among experts in classifying similarity.Approach.We utilized 320 SEEG seizures from 95 consecutive patients who underwent epilepsy surgery. Eight international experts evaluated seizure-pair similarity using a four-level similarity score. As our primary outcome, we developed and validated an automated seizure matching system by employing patient data marked by independent experts. Secondary outcomes included the inter-rater agreement (IRA) and features for classifying seizure similarity.Main results.The seizure matching system achieved a median area-under-the-curve of 0.76 (interquartile range, 0.1), indicating its feasibility. Six distinct seizure similarity features were identified and proved effective: onset region, onset pattern, propagation region, duration, extent of spread, and propagation speed. Among these features, the onset region showed the strongest correlation with expert scores (Spearman's rho = 0.75,p< 0.001). Additionally, the moderate IRA confirmed the practicality of our approach with an agreement of 73.9% (7%), and Gwet's kappa of 0.45 (0.16). Further, the interoperability of the system was validated on seizures from five centers.Significance.We demonstrated the feasibility and validity of a SEEG seizure matching system across patients, effectively mirroring the expertise of epileptologists. This novel system can identify patients with seizures similar to that of a patient being evaluated, thus optimizing the treatment plan by considering the results of treating similar patients in the past, potentially improving surgery outcome.
Collapse
Affiliation(s)
- John Thomas
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
- Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, United States of America
| | - Chifaou Abdallah
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Kassem Jaber
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
- Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, United States of America
| | - Mays Khweileh
- Department of Neurology, Duke University Medical Center, Durham, NC, United States of America
| | - Olivier Aron
- Department of Neurology, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France
- Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France
| | - Irena Doležalová
- Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vadym Gnatkovsky
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Daniel Mansilla
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Päivi Nevalainen
- Epilepsia Helsinki, Full member of ERN EpiCare, Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Raluca Pana
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Stephan Schuele
- Department of Neurology, Northwestern University, Chicago, IL, United States of America
| | - Jaysingh Singh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Ana Suller-Marti
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Alexandra Urban
- University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, United States of America
| | - Jeffery Hall
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
| | - François Dubeau
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Louis Maillard
- Department of Neurology, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France
- Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France
| | - Philippe Kahane
- Grenoble Alpes University Hospital Center, Grenoble Alpes University, Inserm, U1216, Grenoble Institute Neurosciences, Grenoble, France
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
- Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, United States of America
- Department of Neurology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
2
|
Frauscher B, Mansilla D, Abdallah C, Astner-Rohracher A, Beniczky S, Brazdil M, Gnatkovsky V, Jacobs J, Kalamangalam G, Perucca P, Ryvlin P, Schuele S, Tao J, Wang Y, Zijlmans M, McGonigal A. Learn how to interpret and use intracranial EEG findings. Epileptic Disord 2024; 26:1-59. [PMID: 38116690 DOI: 10.1002/epd2.20190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Epilepsy surgery is the therapy of choice for many patients with drug-resistant focal epilepsy. Recognizing and describing ictal and interictal patterns with intracranial electroencephalography (EEG) recordings is important in order to most efficiently leverage advantages of this technique to accurately delineate the seizure-onset zone before undergoing surgery. In this seminar in epileptology, we address learning objective "1.4.11 Recognize and describe ictal and interictal patterns with intracranial recordings" of the International League against Epilepsy curriculum for epileptologists. We will review principal considerations of the implantation planning, summarize the literature for the most relevant ictal and interictal EEG patterns within and beyond the Berger frequency spectrum, review invasive stimulation for seizure and functional mapping, discuss caveats in the interpretation of intracranial EEG findings, provide an overview on special considerations in children and in subdural grids/strips, and review available quantitative/signal analysis approaches. To be as practically oriented as possible, we will provide a mini atlas of the most frequent EEG patterns, highlight pearls for its not infrequently challenging interpretation, and conclude with two illustrative case examples. This article shall serve as a useful learning resource for trainees in clinical neurophysiology/epileptology by providing a basic understanding on the concepts of invasive intracranial EEG.
Collapse
Affiliation(s)
- B Frauscher
- Department of Neurology, Duke University Medical Center and Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - D Mansilla
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
- Neurophysiology Unit, Institute of Neurosurgery Dr. Asenjo, Santiago, Chile
| | - C Abdallah
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - A Astner-Rohracher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - S Beniczky
- Danish Epilepsy Centre, Dianalund, Denmark
- Aarhus University, Aarhus, Denmark
| | - M Brazdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Member of the ERN-EpiCARE, Brno, Czechia
- Behavioral and Social Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - V Gnatkovsky
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - J Jacobs
- Department of Paediatrics and Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - G Kalamangalam
- Department of Neurology, University of Florida, Gainesville, Florida, USA
- Wilder Center for Epilepsy Research, University of Florida, Gainesville, Florida, USA
| | - P Perucca
- Epilepsy Research Centre, Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - P Ryvlin
- Department of Clinical Neurosciences, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - S Schuele
- Department of Neurology, Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - J Tao
- Department of Neurology, The University of Chicago, Chicago, Illinois, USA
| | - Y Wang
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Wilder Center for Epilepsy Research, University of Florida, Gainesville, Florida, USA
| | - M Zijlmans
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - A McGonigal
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
- Mater Research Institute, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
3
|
Avigdor T, Abdallah C, Afnan J, Cai Z, Rammal S, Grova C, Frauscher B. Consistency of electrical source imaging in presurgical evaluation of epilepsy across different vigilance states. Ann Clin Transl Neurol 2024; 11:389-403. [PMID: 38217279 PMCID: PMC10863930 DOI: 10.1002/acn3.51959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/24/2023] [Accepted: 11/18/2023] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE The use of electrical source imaging (ESI) in assessing the source of interictal epileptic discharges (IEDs) is gaining increasing popularity in presurgical work-up of patients with drug-resistant focal epilepsy. While vigilance affects the ability to locate IEDs and identify the epileptogenic zone, we know little about its impact on ESI. METHODS We studied overnight high-density electroencephalography recordings in focal drug-resistant epilepsy. IEDs were marked visually in each vigilance state, and examined in the sensor and source space. ESIs were calculated and compared between all vigilance states and the clinical ground truth. Two conditions were considered within each vigilance state, an unequalized and an equalized number of IEDs. RESULTS The number, amplitude, and duration of IEDs were affected by the vigilance state, with N3 sleep presenting the highest number, amplitude, and duration for both conditions (P < 0.001), while signal-to-noise ratio only differed in the unequalized condition (P < 0.001). The vigilance state did not affect channel involvement (P > 0.05). ESI maps showed no differences in distance, quality, extent, or maxima distances compared to the clinical ground truth for both conditions (P > 0.05). Only when an absolute reference (wakefulness) was used, the channel involvement (P < 0.05) and ESI source extent (P < 0.01) were impacted during rapid-eye-movement (REM) sleep. Clustering of amplitude-sensitive and -insensitive ESI maps pointed to amplitude rather than the spatial profile as the driver (P < 0.05). INTERPRETATION IED ESI results are stable across vigilance states, including REM sleep, if controlled for amplitude and IED number. ESI is thus stable and invariant to the vigilance state.
Collapse
Affiliation(s)
- Tamir Avigdor
- Analytical Neurophysiology LabMontreal Neurological Institute and Hospital, McGill UniversityMontrealQuebecCanada
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontrealCanada
| | - Chifaou Abdallah
- Analytical Neurophysiology LabMontreal Neurological Institute and Hospital, McGill UniversityMontrealQuebecCanada
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontrealCanada
| | - Jawata Afnan
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontrealCanada
| | - Zhengchen Cai
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealQuebecCanada
| | - Saba Rammal
- Analytical Neurophysiology LabMontreal Neurological Institute and Hospital, McGill UniversityMontrealQuebecCanada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontrealCanada
- Multimodal Functional Imaging Lab, PERFORM Centre, Department of PhysicsConcordia UniversityMontrealQuebecCanada
| | - Birgit Frauscher
- Analytical Neurophysiology LabMontreal Neurological Institute and Hospital, McGill UniversityMontrealQuebecCanada
- Department of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke Pratt School of EngineeringDurhamNorth CarolinaUSA
| |
Collapse
|