1
|
Malhotra HS, Singh BP, Kumar N, Garg RK, Kirubakaran R, Emsley HCA, Chhetri SK, Mulvaney CA, Villanueva G. Immunomodulatory treatment for amyotrophic lateral sclerosis/motor neuron disease. Hippokratia 2022. [DOI: 10.1002/14651858.cd013945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hardeep S Malhotra
- Department of Neurology; King George's Medical University; Lucknow India
- Cochrane India-King George's Medical University, Lucknow affiliate; Lucknow India
| | - Balendra P Singh
- Cochrane India-King George's Medical University, Lucknow affiliate; Lucknow India
- Department of Prosthodontics; King George's Medical University; Lucknow India
| | - Neeraj Kumar
- Department of Neurology; King George's Medical University; Lucknow India
- Cochrane India-King George's Medical University, Lucknow affiliate; Lucknow India
| | - Ravindra K Garg
- Department of Neurology; King George's Medical University; Lucknow India
| | - Richard Kirubakaran
- Cochrane India-CMC Vellore Affiliate, Prof. BV Moses Centre for Evidence Informed Healthcare and Health Policy; Christian Medical College; Vellore India
| | - Hedley CA Emsley
- Department of Neurology; Lancashire Teaching Hospitals NHS Foundation Trust; Preston UK
- Lancaster Medical School; Lancaster University; Lancaster UK
| | - Suresh Kumar Chhetri
- Department of Neurology; Lancashire Teaching Hospitals NHS Foundation Trust; Preston UK
- Lancaster Medical School; Lancaster University; Lancaster UK
| | | | | |
Collapse
|
2
|
Alessenko AV, Gutner UA, Nebogatikov VO, Shupik MA, Ustyugov AA. [The role of sphingolipids in pathogenesis of amyotrophic lateral sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:131-140. [PMID: 34481449 DOI: 10.17116/jnevro2021121081131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by selective degeneration of motor neurons of the spinal cord and motor cortex and brain stem. The key features of the course of this disease are excitotoxicity, oxidative stress, mitochondrial dysfunction, neuro-inflammatory and immune reactions. Recently, the mechanisms of programmed cell death (apoptosis), which may be responsible for the degeneration of motor neurons in this disease, have been intensively studied. In this regard, sphingolipids, which are the most important sources of secondary messengers that transmit cell proliferation, differentiation and apoptosis signals, and are involved in the development of neuroinflammatory and immune responses, are of particular interest in the context of ALS pathogenesis. The review provides information from domestic and foreign authors on the involvement of various sphingolipids (sphingomyelins, ceramides, sphingosine, sphinganin, sphingosine-1-phosphate, galactosylceramides, glucosylceramides, gangliosides) in the development of pro-inflammatory reactions and apoptosis of motor neurons in ALS. The authors discuss the prospects of using new drugs that control the metabolism of sphingolipids for the treatment of ALS.
Collapse
Affiliation(s)
| | - U A Gutner
- Institute of Biochemical Physic, Moscow, Russia
| | - V O Nebogatikov
- Institute of Physiologically Active Compounds, Chernogolovka, Russia
| | - M A Shupik
- Institute of Biochemical Physic, Moscow, Russia
| | - A A Ustyugov
- Institute of Physiologically Active Compounds, Chernogolovka, Russia
| |
Collapse
|
3
|
Western Pacific ALS-PDC: Evidence implicating cycad genotoxins. J Neurol Sci 2020; 419:117185. [PMID: 33190068 DOI: 10.1016/j.jns.2020.117185] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) is a disappearing neurodegenerative disorder of apparent environmental origin formerly hyperendemic among Chamorros of Guam-USA, Japanese residents of the Kii Peninsula, Honshu Island, Japan and Auyu-Jakai linguistic groups of Papua-Indonesia on the island of New Guinea. The most plausible etiology is exposure to genotoxins in seed of neurotoxic cycad plants formerly used for food and/or medicine. Primary suspicion falls on methylazoxymethanol (MAM), the aglycone of cycasin and on the non-protein amino acid β-N-methylamino-L-alanine, both of which are metabolized to formaldehyde. Human and animal studies suggest: (a) exposures occurred early in life and sometimes during late fetal brain development, (b) clinical expression of neurodegenerative disease appeared years or decades later, and (c) pathological changes in various tissues indicate the disease was not confined to the CNS. Experimental evidence points to toxic molecular mechanisms involving DNA damage, epigenetic changes, transcriptional mutagenesis, neuronal cell-cycle reactivation and perturbation of the ubiquitin-proteasome system that led to polyproteinopathy and culminated in neuronal degeneration. Lessons learned from research on ALS-PDC include: (a) familial disease may reflect common toxic exposures across generations, (b) primary disease prevention follows cessation of exposure to culpable environmental triggers; and (c) disease latency provides a prolonged period during which to intervene therapeutically. Exposure to genotoxic chemicals ("slow toxins") in the early stages of life should be considered in the search for the etiology of ALS-PDC-related neurodegenerative disorders, including sporadic forms of ALS, progressive supranuclear palsy and Alzheimer's disease.
Collapse
|
4
|
McCauley ME, Baloh RH. Inflammation in ALS/FTD pathogenesis. Acta Neuropathol 2019; 137:715-730. [PMID: 30465257 PMCID: PMC6482122 DOI: 10.1007/s00401-018-1933-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that overlap in their clinical presentation, pathology and genetics, and likely represent a spectrum of one underlying disease. In ALS/FTD patients, neuroinflammation characterized by innate immune responses of tissue-resident glial cells is uniformly present on end-stage pathology, and human imaging studies and rodent models support that neuroinflammation begins early in disease pathogenesis. Additionally, changes in circulating immune cell populations and cytokines are found in ALS/FTD patients, and there is evidence for an autoinflammatory state. However, despite the prominent role of neuro- and systemic inflammation in ALS/FTD, and experimental evidence in rodents that altering microglial function can mitigate pathology, therapeutic approaches to decrease inflammation have thus far failed to alter disease course in humans. Here, we review the characteristics of inflammation in ALS/FTD in both the nervous and peripheral immune systems. We further discuss evidence for direct influence on immune cell function by mutations in ALS/FTD genes including C9orf72, TBK1 and OPTN, and how this could lead to the altered innate immune system “tone” observed in these patients.
Collapse
|
5
|
Schram S, Chuang D, Schmidt G, Piponov H, Helder C, Kerns J, Gonzalez M, Song F, Loeb JA. Mutant SOD1 prevents normal functional recovery through enhanced glial activation and loss of motor neuron innervation after peripheral nerve injury. Neurobiol Dis 2019; 124:469-478. [DOI: 10.1016/j.nbd.2018.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
|
6
|
Abstract
ALS is a neurodegenerative disease in which the primary symptoms result in progressive neuromuscular weakness. Recent studies have highlighted that there is significant heterogeneity with regard to anatomical and temporal disease progression. Importantly, more recent advances in genetics have revealed new causative genes to the disease. New efforts have focused on the development of biomarkers that could aid in diagnosis, prognosis, and serve as pharmacodynamics markers. Although traditional pharmaceuticals continue to undergo trials for ALS, new therapeutic strategies including stem cell transplantation studies, gene therapies, and antisense therapies targeting some of the familial forms of ALS are gaining momentum.
Collapse
|
7
|
Wosiski-Kuhn M, Lyon MS, Caress J, Milligan C. Inflammation, immunity, and amyotrophic lateral sclerosis: II. immune-modulating therapies. Muscle Nerve 2018; 59:23-33. [PMID: 29979478 DOI: 10.1002/mus.26288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
With the emerging popularity of immune-modulatory therapies to treat human diseases there is a need to step back from hypotheses aimed at assessing a condition in a single-system context and instead take into account the disease pathology as a whole. In complex diseases, such as amyotrophic lateral sclerosis (ALS), the use of these therapies to treat patients has been largely unsuccessful and likely premature given our lack of understanding of how the immune system influences disease progression and initiation. In addition, we still have an incomplete understanding of the role of these responses in our model systems and how this may translate clinically to human patients. In this review we discuss preclinical evidence and clinical trial results for a selection of recently conducted studies in ALS. We provide evidence-based reasoning for the failure of these trials and offer suggestions to improve the design of future investigations. Muscle Nerve 59:23-33, 2019.
Collapse
Affiliation(s)
- Marlena Wosiski-Kuhn
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA
| | - Miles S Lyon
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA
| | - James Caress
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Carol Milligan
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, 27157, USA
| |
Collapse
|
8
|
Setter DO, Runge EM, Schartz ND, Kennedy FM, Brown BL, McMillan KP, Miller WM, Shah KM, Haulcomb MM, Sanders VM, Jones KJ. Impact of peripheral immune status on central molecular responses to facial nerve axotomy. Brain Behav Immun 2018; 68:98-110. [PMID: 29030217 PMCID: PMC5767532 DOI: 10.1016/j.bbi.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
When facial nerve axotomy (FNA) is performed on immunodeficient recombinase activating gene-2 knockout (RAG-2-/-) mice, there is greater facial motoneuron (FMN) death relative to wild type (WT) mice. Reconstituting RAG-2-/- mice with whole splenocytes rescues FMN survival after FNA, and CD4+ T cells specifically drive immune-mediated neuroprotection. Evidence suggests that immunodysregulation may contribute to motoneuron death in amyotrophic lateral sclerosis (ALS). Immunoreconstitution of RAG-2-/- mice with lymphocytes from the mutant superoxide dismutase (mSOD1) mouse model of ALS revealed that the mSOD1 whole splenocyte environment suppresses mSOD1 CD4+ T cell-mediated neuroprotection after FNA. The objective of the current study was to characterize the effect of CD4+ T cells on the central molecular response to FNA and then identify if mSOD1 whole splenocytes blocked these regulatory pathways. Gene expression profiles of the axotomized facial motor nucleus were assessed from RAG-2-/- mice immunoreconstituted with either CD4+ T cells or whole splenocytes from WT or mSOD1 donors. The findings indicate that immunodeficient mice have suppressed glial activation after axotomy, and cell transfer of WT CD4+ T cells rescues microenvironment responses. Additionally, mSOD1 whole splenocyte recipients exhibit an increased astrocyte activation response to FNA. In RAG-2-/- + mSOD1 whole splenocyte mice, an elevation of motoneuron-specific Fas cell death pathways is also observed. Altogether, these findings suggest that mSOD1 whole splenocytes do not suppress mSOD1 CD4+ T cell regulation of the microenvironment, and instead, mSOD1 whole splenocytes may promote motoneuron death by either promoting a neurotoxic astrocyte phenotype or inducing Fas-mediated cell death pathways. This study demonstrates that peripheral immune status significantly affects central responses to nerve injury. Future studies will elucidate the mechanisms by which mSOD1 whole splenocytes promote cell death and if inhibiting this mechanism can preserve motoneuron survival in injury and disease.
Collapse
Affiliation(s)
- Deborah O. Setter
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Elizabeth M. Runge
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Nicole D. Schartz
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Felicia M. Kennedy
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Brandon L. Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Kathryn P. McMillan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Whitney M. Miller
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Kishan M. Shah
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Melissa M. Haulcomb
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Virginia M. Sanders
- Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH
| | - Karthryn J. Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| |
Collapse
|
9
|
Fournier CN, Schoenfeld D, Berry JD, Cudkowicz ME, Chan J, Quinn C, Brown RH, Salameh JS, Tansey MG, Beers DR, Appel SH, Glass JD. An open label study of a novel immunosuppression intervention for the treatment of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:242-249. [DOI: 10.1080/21678421.2017.1421666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - David Schoenfeld
- Department of Medicine, Harvard Chan School of Public Health, Department of Biostatistics, Massachusetts General Hospital, Boston, MA, USA,
| | - James D. Berry
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA,
| | - Merit E. Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA,
| | - James Chan
- Department of Medicine, Harvard Chan School of Public Health, Department of Biostatistics, Massachusetts General Hospital, Boston, MA, USA,
| | - Colin Quinn
- Department of Neurology, University of Massachusetts, Worcester, MA, USA,
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts, Worcester, MA, USA,
| | - Johnny S. Salameh
- Department of Neurology, University of Massachusetts, Worcester, MA, USA,
| | - Malu G. Tansey
- Department of Physiology, Emory University, Atlanta, GA, USA, and
| | - David R. Beers
- Department of Neurology, Houston Methodist Neurologic Institute, Houston, TX, USA
| | - Stanley H. Appel
- Department of Neurology, Houston Methodist Neurologic Institute, Houston, TX, USA
| | | |
Collapse
|
10
|
Khalid SI, Ampie L, Kelly R, Ladha SS, Dardis C. Immune Modulation in the Treatment of Amyotrophic Lateral Sclerosis: A Review of Clinical Trials. Front Neurol 2017; 8:486. [PMID: 28993751 PMCID: PMC5622209 DOI: 10.3389/fneur.2017.00486] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the degeneration of motor neurons. Though many molecular and genetic causes are thought to serve as predisposing or disease propagating factors, the underlying pathogenesis of the disease is not known. Recent discoveries have demonstrated the presence of inflammation propagating substrates in the central nervous system of patients afflicted with ALS. Over the past decade, this hypothesis has incited an effort to better understand the role of the immune system in ALS and has led to the trial of several potential immune-modulating therapies. Here, we briefly review advances in the role of such therapies. The clinical trials discussed here are currently ongoing or have been concluded at the time of writing.
Collapse
Affiliation(s)
| | - Leonel Ampie
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, United States.,Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA, United States.,Georgetown University School of Medicine, Washington, DC, United States
| | - Ryan Kelly
- Georgetown University School of Medicine, Washington, DC, United States
| | - Shafeeq S Ladha
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Christopher Dardis
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
11
|
Berry JD, Paganoni S, Atassi N, Macklin EA, Goyal N, Rivner M, Simpson E, Appel S, Grasso DL, Mejia NI, Mateen F, Gill A, Vieira F, Tassinari V, Perrin S. Phase IIa trial of fingolimod for amyotrophic lateral sclerosis demonstrates acceptable acute safety and tolerability. Muscle Nerve 2017; 56:1077-1084. [PMID: 28662296 PMCID: PMC5724488 DOI: 10.1002/mus.25733] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2017] [Indexed: 11/11/2022]
Abstract
Introduction Immune activation has been implicated in progression of amytrophic lateral sclerosis (ALS). Oral fingolimod reduces circulating lymphocytes. The objective of this phase IIa, randomized, controlled trial was to test the short‐term safety, tolerability, and target engagement of fingolimod in ALS. Methods Randomization was 2:1 (fingolimod:placebo). Treatment duration was 4 weeks. Primary outcomes were safety and tolerability. Secondary outcomes included circulating lymphocytes and whole‐blood gene expression. Results Thirty participants were randomized; 28 were administered a drug (fingolimod 18, placebo 10). No serious adverse events occurred. Adverse events were similar by treatment arm, as was study discontinuation (2 fingolimod vs. 0 placebo, with no statistical difference). Forced expiratory volume in 1 second (FEV1) and FEV1/slow vital capacity changes were similar in the fingolimod and placebo arms. Circulating lymphocytes decreased significantly in the fingolimod arm (P < 0.001). Nine immune‐related genes were significantly downregulated in the fingolimod arm, including forkhead box P3 (P < 0.001) and CD40 ligand (P = 0.003). Discussion Fingolimod is safe and well‐tolerated and can reduce circulating lymphocytes in ALS patients. Muscle Nerve56: 1077–1084, 2017
Collapse
Affiliation(s)
- James D Berry
- Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sabrina Paganoni
- Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nazem Atassi
- Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Macklin
- Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Namita Goyal
- Department of Neurology, University of California, Irvine, Orange, California, USA
| | - Michael Rivner
- Department of Neurology, Augusta University Medical Center, Augusta, Georgia, USA
| | - Ericka Simpson
- Department of Neurology, Methodist Hospital, Houston, Texas, USA
| | - Stanley Appel
- Department of Neurology, Methodist Hospital, Houston, Texas, USA
| | - Daniela L Grasso
- Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - Nicte I Mejia
- Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - Farrah Mateen
- Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - Alan Gill
- ALS Therapy Development Institute, Cambridge, Massachusetts, USA
| | - Fernando Vieira
- ALS Therapy Development Institute, Cambridge, Massachusetts, USA
| | | | - Steven Perrin
- ALS Therapy Development Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Lall D, Baloh RH. Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J Clin Invest 2017; 127:3250-3258. [PMID: 28737506 DOI: 10.1172/jci90607] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative disorder that is characterized by loss of motor neurons and shows clinical, pathological, and genetic overlap with frontotemporal dementia (FTD). Activated microglia are a universal feature of ALS/FTD pathology; however, their role in disease pathogenesis remains incompletely understood. The recent discovery that ORF 72 on chromosome 9 (C9orf72), the gene most commonly mutated in ALS/FTD, has an important role in myeloid cells opened the possibility that altered microglial function plays an active role in disease. This Review highlights the contribution of microglia to ALS/FTD pathogenesis, discusses the connection between autoimmunity and ALS/FTD, and explores the possibility that C9orf72 and other ALS/FTD genes may have a "dual effect" on both neuronal and myeloid cell function that could explain a shared propensity for altered systemic immunity and neurodegeneration.
Collapse
Affiliation(s)
- Deepti Lall
- Board of Governors Regenerative Medicine Institute and
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute and.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
13
|
Abstract
Amyotrophic lateral sclerosis (ALS) is proving intractable. Difficulties in pre-clinical studies contribute in small measure to this futility, but the chief reason for failure is an inadequate understanding of disease pathogenesis. Many acquired and inherited processes have been advanced as potential causes of ALS but, while they may predispose to disease, it seems increasingly likely that none leads directly to ALS. Rather, two recent overlapping considerations, both involving aberrant protein homeostasis, may provide a better explanation for a common disease phenotype and a common terminal pathogenesis. If so, therapeutic approaches will need to be altered and carefully nuanced, since protein homeostasis is essential and highly conserved. Nonetheless, these considerations provide new optimism in a difficult disease which has hitherto defied treatment.
Collapse
|
14
|
Leis AA, Ross MA, Verheijde JL, Leis JF. Immunoablation and Stem Cell Transplantation in Amyotrophic Lateral Sclerosis: The Ultimate Test for the Autoimmune Pathogenesis Hypothesis. Front Neurol 2016; 7:12. [PMID: 26903945 PMCID: PMC4749695 DOI: 10.3389/fneur.2016.00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 01/22/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- A Arturo Leis
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, USA; Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Mark A Ross
- Department of Neurology, Mayo Clinic Arizona , Scottsdale, AZ , USA
| | - Joseph L Verheijde
- Department of Physical Medicine and Rehabilitation, Mayo Clinic Arizona , Scottsdale, AZ , USA
| | - Jose F Leis
- Division of Hematology Oncology, Mayo Clinic Arizona , Phoenix, AZ , USA
| |
Collapse
|
15
|
Donaldson R, Li J, Li Y. Clinical significance of cation channel antibodies in motor neuron disease. Muscle Nerve 2016; 54:228-31. [DOI: 10.1002/mus.25046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 01/07/2015] [Accepted: 01/12/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Rachel Donaldson
- Department of Neurology; Cleveland Clinic Foundation; 9500 Euclid Avenue Cleveland Ohio 44195 USA
| | - Jianbo Li
- Department of Quantitative Health Sciences; Learner Research Institute, Cleveland Clinic Foundation; Cleveland Ohio USA
| | - Yuebing Li
- Department of Neurology; Cleveland Clinic Foundation; 9500 Euclid Avenue Cleveland Ohio 44195 USA
| |
Collapse
|
16
|
Tzartos JS, Zisimopoulou P, Rentzos M, Karandreas N, Zouvelou V, Evangelakou P, Tsonis A, Thomaidis T, Lauria G, Andreetta F, Mantegazza R, Tzartos SJ. LRP4 antibodies in serum and CSF from amyotrophic lateral sclerosis patients. Ann Clin Transl Neurol 2013; 1:80-7. [PMID: 25356387 PMCID: PMC4212481 DOI: 10.1002/acn3.26] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 12/02/2013] [Accepted: 12/04/2013] [Indexed: 12/11/2022] Open
Abstract
Objective Amyotrophic lateral sclerosis (ALS) and myasthenia gravis (MG) are caused, respectively, by motor neuron degeneration and neuromuscular junction (NMJ) dysfunction. The membrane protein LRP4 is crucial in the development and function of motor neurons and NMJs and LRP4 autoantibodies have been recently detected in some MG patients. Because of the critical role in motor neuron function we searched for LRP4 antibodies in ALS patients. Methods We developed a cell-based assay and a radioimmunoassay and with these we studied the sera from 104 ALS patients. Results LRP4 autoantibodies were detected in sera from 24/104 (23.4%) ALS patients from Greece (12/51) and Italy (12/53), but only in 5/138 (3.6%) sera from patients with other neurological diseases and 0/40 sera from healthy controls. The presence of LRP4 autoantibodies in five of six tested patients was persistent for at least 10 months. Cerebrospinal fluid samples from six of seven tested LRP4 antibody-seropositive ALS patients were also positive. No autoantibodies to other MG autoantigens (AChR and MuSK) were detected in ALS patients. No differences in clinical pattern were seen between ALS patients with or without LRP4 antibodies. Conclusions We infer that LRP4 autoantibodies are involved in patients with neurological manifestations affecting LRP4-containing tissues and are found more frequently in ALS patients than MG patients. LRP4 antibodies may have a direct pathogenic activity in ALS by participating in the denervation process.
Collapse
Affiliation(s)
- John S Tzartos
- Hellenic Pasteur Institute Athens, Greece ; Department of Neurology, General Hospital "Red Cross" Athens, Greece
| | | | - Michael Rentzos
- Neurology Department, Aeginition Hospital, School of Medicine, National and Kapodistrian University Athens, Greece
| | - Nikos Karandreas
- Neurology Department, Aeginition Hospital, School of Medicine, National and Kapodistrian University Athens, Greece
| | - Vasiliki Zouvelou
- Neurology Department, Aeginition Hospital, School of Medicine, National and Kapodistrian University Athens, Greece
| | - Panagiota Evangelakou
- Hellenic Pasteur Institute Athens, Greece ; Department of Pharmacy, University of Patras Patras, Greece
| | - Anastasios Tsonis
- Hellenic Pasteur Institute Athens, Greece ; Department of Pharmacy, University of Patras Patras, Greece
| | - Thomas Thomaidis
- Department of Neurology, General Hospital "Red Cross" Athens, Greece
| | | | | | | | - Socrates J Tzartos
- Hellenic Pasteur Institute Athens, Greece ; Neurology Department, Aeginition Hospital, School of Medicine, National and Kapodistrian University Athens, Greece
| |
Collapse
|
17
|
Bowerman M, Vincent T, Scamps F, Perrin FE, Camu W, Raoul C. Neuroimmunity dynamics and the development of therapeutic strategies for amyotrophic lateral sclerosis. Front Cell Neurosci 2013; 7:214. [PMID: 24312006 PMCID: PMC3833095 DOI: 10.3389/fncel.2013.00214] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/28/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder characterized by the progressive and selective loss of both upper and lower motoneurons. The neurodegenerative process is accompanied by a sustained inflammation in the brain and spinal cord. The neuron-immune interaction, implicating resident microglia of the central nervous system and blood-derived immune cells, is highly dynamic over the course of the disease. Here, we discuss the timely controlled neuroprotective and neurotoxic cues that are provided by the immune environment of motoneurons and their potential therapeutic applications for ALS.
Collapse
Affiliation(s)
- Melissa Bowerman
- The Neuroscience Institute of Montpellier, INM, INSERM UMR1051, Saint Eloi Hospital Montpellier, France
| | | | | | | | | | | |
Collapse
|
18
|
Rodrigues MCO, Sanberg PR, Cruz LE, Garbuzova-Davis S. The innate and adaptive immunological aspects in neurodegenerative diseases. J Neuroimmunol 2013; 269:1-8. [PMID: 24161471 DOI: 10.1016/j.jneuroim.2013.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/03/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases affect a considerable percentage of the elderly population. New therapeutic approaches are warranted, aiming to at least delay and possibly reverse disease progression. Strategies to elaborate such approaches require knowledge of specific immune system involvement in disease pathogenesis. In this review, innate and adaptive immunological aspects of neurodegenerative disorders, in particular Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS), are discussed. Initiating disease factors, as well as common mechanistic pathways, are detailed and potential immunological therapeutic targets are identified.
Collapse
Affiliation(s)
- Maria C O Rodrigues
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto School of Medicine, University of Sao Paulo, Brazil
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States
| | - Luis Eduardo Cruz
- Cryopraxis, Cell Praxis, BioRio, Polo de Biotechnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States.
| |
Collapse
|
19
|
Choudry RB, Cudkowicz ME. Clinical Trials in Amyotrophic Lateral Sclerosis: The Tenuous Past and the Promising Future. J Clin Pharmacol 2013; 45:1334-44. [PMID: 16291708 DOI: 10.1177/0091270005282631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The past decade of research in amyotrophic lateral sclerosis has contributed to a greater understanding of the disease process, the development of relevant animal models, and the identification of several therapeutic approaches that may delay disease progression. Completed and ongoing clinical trials and the process of selecting drugs for clinical trials are presented.
Collapse
Affiliation(s)
- Rabia B Choudry
- Neurology Clinical Trials Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, GRB 1256, Boston, MA 02114, USA.
| | | |
Collapse
|
20
|
Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, Doykan CE, Wu PM, Gali RR, Iyer LK, Lawson R, Berry J, Krichevsky AM, Cudkowicz ME, Weiner HL. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 2012; 122:3063-87. [PMID: 22863620 DOI: 10.1172/jci62636] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 06/14/2012] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive disease associated with neuronal cell death that is thought to involve aberrant immune responses. Here we investigated the role of innate immunity in a mouse model of ALS. We found that inflammatory monocytes were activated and that their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We also found a decrease in resident microglia in the spinal cord with disease progression. Prior to disease onset, splenic Ly6Chi monocytes expressed a polarized macrophage phenotype (M1 signature), which included increased levels of chemokine receptor CCR2. As disease onset neared, microglia expressed increased CCL2 and other chemotaxis-associated molecules, which led to the recruitment of monocytes to the CNS by spinal cord-derived microglia. Treatment with anti-Ly6C mAb modulated the Ly6Chi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss, and extended survival. In humans with ALS, the analogous monocytes (CD14+CD16-) exhibited an ALS-specific microRNA inflammatory signature similar to that observed in the ALS mouse model, linking the animal model and the human disease. Thus, the profile of monocytes in ALS patients may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach.
Collapse
Affiliation(s)
- Oleg Butovsky
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Amyotrophic lateral sclerosis. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Rodrigues MCO, Voltarelli JC, Sanberg PR, Borlongan CV, Garbuzova-Davis S. Immunological Aspects in Amyotrophic Lateral Sclerosis. Transl Stroke Res 2012; 3:331-40. [DOI: 10.1007/s12975-012-0177-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/07/2012] [Accepted: 04/11/2012] [Indexed: 12/11/2022]
|
23
|
Baldinger R, Katzberg HD, Weber M. Treatment for cramps in amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 2012:CD004157. [PMID: 22513921 DOI: 10.1002/14651858.cd004157.pub2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cramps are painful, involuntary muscle contractions. They commonly affect people with amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) at all stages of the disease. To date, the treatment of muscle cramps in ALS has been largely empirical without any evidence from randomised controlled trials. OBJECTIVES To systematically assess the effect of interventions on muscle cramps as a primary or secondary endpoint or adverse event in people with ALS/MND. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (14 February 2011), the Cochrane Central Register of Controlled Trials (Issue 1, 2011 in The Cochrane Library), MEDLINE (January 1966 to January 2011) and EMBASE (January 1980 to January 2011) and reference lists of articles searched using the terms motor neuron disease, motor neurone disease, motoneuron disease or amyotrophic lateral sclerosis. We contacted authors of trials for further information. SELECTION CRITERIA We included all randomised and quasi-randomised trials of oral medications in people with ALS which assessed cramps as a primary or secondary outcome measure or as an adverse event. We also included trials using subcutaneous or intravenous medications or physical therapy. DATA COLLECTION AND ANALYSIS All authors applied the selection criteria and assessed study quality independently, and all authors performed independent data extraction. MAIN RESULTS Twenty studies including 4789 participants were identified. Only one trial, of tetrahydrocannabinol (THC), assessed cramps as the primary endpoint. Thirteen studies assessed cramps as a secondary endpoint. The medications comprised vitamin E, baclofen, riluzole, L-threonine, xaliproden, indinavir, and memantine. Six studies assessed cramps as an adverse event. The medications comprised creatine, gabapentin, dextromethorphan, quinidine, and lithium. In all 20 studies no favourable effect for the treatment of cramps in ALS/MND could be demonstrated, but many studies were underpowered to draw a definite conclusion. A meta-analysis of two small studies showed a statistically nonsignificant result for the amino acid L-threonine for the treatment of cramps in ALS/MND. No study was identified using physical therapy as a therapeutic intervention for cramps. AUTHORS' CONCLUSIONS There is no evidence to support the use of any intervention for muscle cramps in ALS/MND. More and larger randomised controlled trials evaluating treatments for muscle cramps in ALS/MND are needed.
Collapse
Affiliation(s)
- Reto Baldinger
- Muskelzentrum/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | | |
Collapse
|
24
|
Andres PL, Skerry LM, Munsat TL, Thornell BJ, Szymonifka J, Schoenfeld DA, Cudkowicz ME. Validation of a new strength measurement device for amyotrophic lateral sclerosis clinical trials. Muscle Nerve 2011; 45:81-5. [DOI: 10.1002/mus.22253] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Vasculitis-like neuropathy in amyotrophic lateral sclerosis unresponsive to treatment. Acta Neuropathol 2011; 122:343-52. [PMID: 21626035 DOI: 10.1007/s00401-011-0837-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/08/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease with variable involvement of other systems. A pathogenetic role of immune-mediated mechanisms has been suggested. We retrospectively analyzed sural nerve pathology and the clinical course in 18 patients with ALS. These patients had undergone sural nerve biopsy because of clinical or neurophysiological signs indicating sensory involvement (ALS+). Eleven of the 18 ALS+ patients had inflammatory cell infiltrates (ALS(vasc)) resembling infiltrates seen in patients with vasculitic neuropathy. Data were compared with the 7 patients without vasculitic infiltrates (ALS(nonvasc)) and with those of 16 patients with isolated peripheral nerve vasculitis (NP(vasc)). Biopsy specimens were processed with standard histological stains and with immunohistochemistry for a panel of inflammatory markers, with the hypothesis that the composition of infiltrates should differ between ALS(vasc) and NP(vasc). Immunoreactive cells were quantified in a blinded manner. Unlike patients with NP(vasc), those with ALS(vasc) had only minor neurophysiological abnormalities in the sural nerve and, except for the infiltrates, almost normal nerve morphology on semithin sections. The difference in epineurial T cell count was significant between ALS(vasc) and ALS(nonvasc) (p = 0.031). Surprisingly, the cellular composition of epineurial infiltrates in sural nerve biopsies was indistinguishable between ALS(vasc) and NP(vasc) despite a significant difference in fiber pathology (p < 0.0001). Standard immunosuppressive treatment did not prevent clinical progression of the motor neuron disease in any of the patients with ALS(vasc). ALS(vasc) appears as a neuropathological subtype in ALS+ suggesting immune-mediated disease components but without response to standard immunosuppressive treatment.
Collapse
|
26
|
Autoimmunity in amyotrophic lateral sclerosis: past and present. Neurol Res Int 2011; 2011:497080. [PMID: 21826267 PMCID: PMC3150148 DOI: 10.1155/2011/497080] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/03/2011] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting particularly motor neurons for which no cure or effective treatment is available. Although the cause of ALS remains unknown, accumulative evidence suggests an autoimmune mechanism of pathogenesis. In this paper, we will summarize the current research related to autoimmunity in the sporadic form of ALS and discuss the potential underlying pathogenic mechanisms and perspectives. Presented data supports the view that humoral immune responses against motor nerve terminals can initiate a series of physiological changes leading to alteration of calcium homeostasis. In turn, loss of calcium homeostasis may induce neuronal death through apoptotic signaling pathways. Additional approaches identifying specific molecular features of this hypothesis are required, which will hopefully allow us to develop techniques of early diagnosis and effective therapies.
Collapse
|
27
|
Nwosu VK, Royer JA, Stickler DE. Voltage gated potassium channel antibodies in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2009; 11:392-4. [DOI: 10.3109/17482960903452283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Specific electron transport chain abnormalities in amyotrophic lateral sclerosis. J Neurol 2009; 256:774-82. [DOI: 10.1007/s00415-009-5015-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/03/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
|
29
|
Benatar M, Kurent J, Moore DH. Treatment for familial amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 2009; 2009:CD006153. [PMID: 19160266 PMCID: PMC7388919 DOI: 10.1002/14651858.cd006153.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a rare neurodegenerative disease. Approximately 5% to 7% of ALS/MND patients report a family history of a similarly affected relative. Superoxide dismutase-1 gene mutations are the cause in about 20% of familial cases. In those with non-familial (sporadic) ALS/MND the cause is unknown. Also unknown is whether patients with familial and sporadic ALS/MND respond differently to treatment. OBJECTIVES To systematically review the literature and to answer the specific question: 'Is there a difference in the response to treatment between patients with sporadic and familial forms of ALS?' SEARCH STRATEGY In May 2006 we searched the Cochrane Neuromuscular Disease Group Trials Register, MEDLINE (January 1966 to May 2006) and EMBASE (January 1980 to May 2006) for randomized controlled trials (RCTs). Two review authors read the titles and abstracts of all articles and reviewed the full text of all possibly relevant articles. We scanned references of all included trials to identify additional relevant articles. For all trials eligible for inclusion we contacted the authors to request the necessary raw data. SELECTION CRITERIA Studies had to meet two criteria: (a) randomized controlled study design, and (b) inclusion of patients with both familial and sporadic ALS/MND. DATA COLLECTION AND ANALYSIS We attempted to contact authors of all trials that met inclusion criteria. We obtained data regarding ALS/MND type (sporadic versus familial), treatment assignment (active versus placebo), survival and ALS Functional Rating Scale scores for four large RCTs that included 822 sporadic and 41 familial ALS patients. We could not obtain data from 25 potentially eligible studies (17 trial authors could not be contacted and eight were unwilling to provide data). MAIN RESULTS There was no statistical evidence for a different response to treatment in patients with familial ALS/MND compared to those with sporadic ALS/MND. The pooled estimate of the hazard ratio for the interaction term (treatment x familial ALS) suggested a more beneficial response with respect to survival among patients with familial ALS/MND, but the result was not statistically significant. Estimates of the rate of decline on the ALS Functional Rating Scale also suggested a slightly better response to treatment among those with familial ALS/MND, but the result was not statistically significant. AUTHORS' CONCLUSIONS Future RCTs should document whether patients with familial ALS/MND are included and the presence or absence of a mutation in the superoxide dismutase-1 gene amongst those with familial ALS/MND.
Collapse
Affiliation(s)
- Michael Benatar
- Neurology Department, Emory University, Department of Neurology, Woodruff Memorial Building , Suite 6000, 100 Woodruff Circle, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
30
|
Schwarz F, Christie D. Use of 'sham' radiotherapy in randomized clinical trials. J Med Imaging Radiat Oncol 2008; 52:269-77. [PMID: 18477122 DOI: 10.1111/j.1440-1673.2008.01936.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The objective of this systematic review was to identify quality trials that use sham radiotherapy in their design and review them to determine its potential value. The Cochrane Library, Pubmed and a Reference Search served as data sources. Trials were included if they met a minimum quality score of 3 on a validated assessment instrument (which assesses randomization, control and blinding) and if they compared sham radiotherapy to active treatment. External beam therapy and brachytherapy trials were considered. Twenty-six trials were identified, collectively including 2663 participants in the period of 1970-2004. All the trials studied the value of radiotherapy for treatment or prevention of benign diseases, including multiple sclerosis, coronary artery restenosis, age-related macular degeneration and Graves' ophthalmopathy. There were no trials relating to the use of radiotherapy in the treatment of malignancy. This review showed that it is possible to carry out sham radiotherapy with due regard for ethical concerns, with effective blinding and high levels of patient acceptance. Large sample sizes with multicentre trial designs were achievable. Although the statistical philosophy for using sham radiotherapy in trials is legitimate, it is no longer routinely used.
Collapse
Affiliation(s)
- F Schwarz
- School of Medicine, University of Queensland, Rural Clinical Division of Queensland, Rockhampton, Queensland, Australia
| | | |
Collapse
|
31
|
Maragakis NJ, Rothstein JD. Amyotrophic Lateral Sclerosis: Idiopathic and Inherited. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Campana-Salort E. Évaluation des fonctions motrices dans la sclérose latérale amyotrophique (SLA). Rev Neurol (Paris) 2006. [DOI: 10.1016/s0035-3787(06)75177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Strong MJ. Amyotrophic lateral sclerosis: contemporary concepts in etiopathogenesis and pharmacotherapy. Expert Opin Investig Drugs 2006; 13:1593-614. [PMID: 15566317 DOI: 10.1517/13543784.13.12.1593] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Among the neurodegenerative diseases associated with ageing, amyotrophic lateral sclerosis (ALS) remains the most devastating. The disease inexorably progresses, the vast majority of pharmacotherapies have failed to modify the disease course, death ensues on average within 5 years of symptom onset and increasing numbers of individuals are afflicted with the disease. However, significant advances in our understanding of the natural history of ALS and of the fundamental nature of the biological defect underlying motor neuron degeneration have been gained, providing hope for the development of novel pharmacotherapies for ALS. Among these is the recognition that ALS is a biologically heterogeneous disorder in which genetics, environment and ageing all interrelate. The observation of clinical heterogeneity, with initial clinical manifestations serving as predictors of survivorship, is of considerable importance in designing therapeutic trials. The presence of frontotemporal dysfunction in a subset of patients has led to increased interest in the relationship between ALS and the degenerative tauopathies. Ultimately, the degenerating motor neurons do not die alone. The contribution of both microglia and astrocytes to the degenerative process are increasingly recognised. Understanding how these processes interrelate has become critical to understanding the pharmacotherapy of ALS and in the design of clinical trials. This review will highlight recent epidemiological and neurochemical advances in our understanding of ALS, and place them into the context of understanding the development of novel treatment avenues for this devastating disease.
Collapse
Affiliation(s)
- Michael J Strong
- Department of Clinical Neurological Sciences, University of Western Ontario, The Robarts Research Institute, London, Canada.
| |
Collapse
|
34
|
de Carvalho M, Costa J, Swash M. Clinical trials in ALS: a review of the role of clinical and neurophysiological measurements. ACTA ACUST UNITED AC 2006; 6:202-12. [PMID: 16319023 DOI: 10.1080/14660820510011997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have reviewed all the published clinical trials of ALS and, from those considered sufficiently large, and containing a control group, we have evaluated their methodology with regard to statistical power. This implies a critical analysis of the endpoint measurements. We have concluded that clinical endpoints used in clinical trials of ALS have frequently been insufficiently sensitive, non-linear, or even not intuitively highly relevant to the disease. We suggest that the ALS-FRS, perhaps also MUNE and the Neurophysiological Index, may be the best measures currently available. These techniques have complementary characteristics that allow them to be used to address different aspects of the disease and its treatment in various trials designs. In the past some trials may have failed to demonstrate a treatment effect because the chosen endpoint measures and the trial design were inappropriate.
Collapse
|
35
|
Abstract
There is currently no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating disorder of the human nervous system that, due to motoneurone degeneration, causes progressive loss of muscle function and death. The relentless progression of ALS and the uniformly poor prognosis have been unhindered by a variety of therapeutic agents tested in previous clinical studies. Recently, two drugs, namely riluzole and recombinant human insulin-like growth factor-I (IGF-1), have been reported to benefit patients with ALS by improving survival or slowing disease progression. Several other drugs, such as gabapentin and various neurotrophic factors, are being investigated in on-going clinical trials. Therapeutic developments in ALS have been hampered by the fact that the precise cause of the disease remains unknown. In addition, there are considerable variations in disease related characteristics among patients, rendering accurate measurements of disease progression difficult. Advances in theories of pathogenesis, such as genetic factors, glutamate excitotoxicity, oxidative stress, autoimmune mechanism and cytoskeletal abnormality will help guide the development of future therapies. Newer approaches to therapy may include suitable glutamate antagonists, small molecules that augment neurotrophic factor function, and anti-oxidants. Combination therapy of effective agents should be considered.
Collapse
Affiliation(s)
- E C Lai
- Baylor College of Medicine, Houston Veterans Affairs Medical Center, 6550 Fannin, Suite 1801, Houston, Texas 77030, USA.
| |
Collapse
|
36
|
Cudkowicz M, Qureshi M, Shefner J. Measures and markers in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2004. [DOI: 10.1007/bf03206611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
37
|
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterized by loss of spinal and cortical motor neurons, leading to progressive weakness and ultimately, death. Clinically, there appears to be an anatomic focus at disease onset, from which the disease then spreads. Because the focus of initial symptoms and the subsequent direction of spread can vary from patient to patient, disease monitoring is difficult, especially in a clinical trial, in which outcome measures must be identical and able to capture progression of all types. Thus, the search for markers of disease progression is especially important in ALS. Many approaches have been taken, from voluntary strength assessment and functional rating scales to physiological and pathological sampling of affected portions of nervous system. No proposed marker has been demonstrated to meet the desired criteria of biological meaning, sensitivity to disease progression, clear relationship to overall prognosis and survival, and ease of measurement. However, progress is being made in all of these regards.
Collapse
Affiliation(s)
- Merit Cudkowicz
- Neurology Clinical Trial Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | |
Collapse
|
38
|
Abstract
Once thought to be a single pathological disease state, amyotrophic lateral sclerosis (ALS) is now recognized to be the limited phenotypic expression of a complex, heterogeneous group of biological processes, resulting in an unrelenting loss of motor neurons. On average, individuals affected with the disease live <5 years. In this article, the complex nature of the pathogenesis of ALS, including features of age dependency, environmental associations, and genetics, is reviewed. Once held to be uncommon, it is now clear that ALS is associated with a frontotemporal dementia and that this process may reflect disturbances in the microtubule-associated tau protein metabolism. The motor neuron ultimately succumbs in a state where significant disruptions in neurofilament metabolism, mitochondrial function, and management of oxidative stress exist. The microenvironment of the neuron becomes a complex milieu in which high levels of glutamate provide a source of chronic excitatory neurotoxicity, and the contributions of activated microglial cells lead to further cascades of motor neuron death, perhaps serving to propagate the disease once established. The final process of motor neuron death encompasses many features of apoptosis, but it is clear that this alone cannot account for all features of motor neuron loss and that aspects of a necrosis-apoptosis continuum are at play. Designing pharmacological strategies to mitigate against this process thus becomes an increasingly complex issue, which is reviewed in this article.
Collapse
Affiliation(s)
- Michael J Strong
- Department of Clinical Neurological Sciences, Robarts Research Institute, Room 7OF 10, University Campus, London Health Sciences Centre, University of Western Ontario, 339 Windermere Road, London, Ontario, Canada N6A 5A5.
| |
Collapse
|
39
|
Abstract
Fifteen years ago, a role for excitotoxic damage in the pathology of amyotrophic lateral sclerosis (ALS) was postulated. This stimulated the development of riluzole, the only available treatment for the disease. Since then, the identification of abnormal forms of superoxide dismutase as the genetic basis of certain familial forms of ALS has provided a huge impetus to the search for new effective treatments for this devastating disease. Transgenic mouse models have been developed expressing these aberrant mutants that develop a form of motor neurone disease the progress of which can be slowed by riluzole. Studies in these mice have provided evidence for a role for excitotoxic, apoptotic and oxidative processes in the development of pathology. The mice can be used for testing molecules targeting these processes as potential therapies, to allow the most promising to be evaluated in humans. Several such agents are currently in clinical trials. Many previous clinical trials in ALS were insufficiently powered to demonstrate any relevant effect on disease progression. This situation has been to some extent remedied in the more recent trials, which have recruited many hundreds of patients. However, with the exception of studies with riluzole, the results of these have been disappointing. In particular, a number of large trials with neurotrophic agents have revealed no evidence for efficacy. Nonetheless, the need for large multinational trials of long duration limits the number that can be carried out and makes important demands on investment. For this reason, surrogate markers that can be used for rapid screening in patients of potential treatments identified in the transgenic mice are urgently needed.
Collapse
|
40
|
Groeneveld GJ, Veldink JH, van der Tweel I, Kalmijn S, Beijer C, de Visser M, Wokke JHJ, Franssen H, van den Berg LH. A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Ann Neurol 2003; 53:437-45. [PMID: 12666111 DOI: 10.1002/ana.10554] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease with no cure. In a transgenic mouse model of ALS, creatine monohydrate showed a promising increase in survival. We performed a double-blind, placebo-controlled, sequential clinical trial to assess the effect of creatine monohydrate on survival and disease progression in patients with ALS. Between June 2000 and December 2001, 175 patients with probable, probable-laboratory supported, or definite ALS were randomly assigned to receive either creatine monohydrate or placebo 10 gm daily. A sequential trial design was used with death, persistent assisted ventilation, or tracheostomy as primary end points. Secondary outcome measurements were rate of decline of isometric arm muscle strength, forced vital capacity, functional status, and quality of life. The trial was stopped when the null hypothesis of indifference was accepted. Creatine did not affect survival (cumulative survival probability of 0.70 in the creatine group vs 0.68 in the placebo group at 12 months, and 0.52 in the creatine group vs 0.47 in the placebo group at 16 months), or the rate of decline of functional measurements. Creatine intake did not cause important adverse reactions. This placebo-controlled trial did not find evidence of a beneficial effect of creatine monohydrate on survival or disease progression in patients with ALS.
Collapse
Affiliation(s)
- G J Groeneveld
- Department of Neurology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jackson M, Lladó J, Rothstein JD. Therapeutic developments in the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2002; 11:1343-64. [PMID: 12387699 DOI: 10.1517/13543784.11.10.1343] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease characterised by the selective death of motor neurones. The mechanisms and processes responsible for the selective loss of motor neurones are still unknown, however several hypotheses have been put forward, including oxidative damage and/or toxicity from intracellular aggregates due to mutant superoxide dismutase-1 activity, axonal strangulation from cytoskeletal abnormalities, loss of trophic factor support and glutamate-mediated excitotoxicity. These theories are based on a better understanding of the genetics of amyotrophic lateral sclerosis and on biochemical and pathological analysis of post-mortem tissue. They have led to the development of appropriate animal and cell culture models, allowing the sequence of events in motor neuronal degeneration to be unravelled and potential therapeutic agents to be screened. Unfortunately, the majority of therapeutics found to be efficacious in the animal and cell culture models have failed in human trials. Riluzole is still the only proven therapy in humans, shown to extend survival of amyotrophic lateral sclerosis patients by approximately 3 months, but it has no effect on muscle strength. Other potential therapeutic approaches are being identified, including inhibition of caspase-mediated cell death, maintenance of mitochondrial integrity and energy production, regulation of glutamate homeostasis, reduction of inflammation and control of neurofilament synthesis. Hopefully, in the near future some new agents will be found that can alter the course of this devastating and fatal disease.
Collapse
Affiliation(s)
- Mandy Jackson
- Department of Preclinical Veterinary Sciences, The University of Edinburgh, Scotland, UK
| | | | | |
Collapse
|
42
|
Strong MJ. Progress in clinical neurosciences: the evidence for ALS as a multisystems disorder of limited phenotypic expression. Can J Neurol Sci 2001; 28:283-98. [PMID: 11766772 DOI: 10.1017/s0317167100001505] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Traditionally, amyotrophic lateral sclerosis (ALS) is considered to be a unique neurodegeneration disorder in which motor neurons are selectively vulnerable to a single disease process. Our current understanding of ALS, however, suggests that this is far too limited an approach. While motor neuron degeneration remains the central component to this process, there is considerable phenotypic variability including broad ranges in survivorship and the presence or absence of cognitive impairment. The number of familial variants of ALS for which unique genetic linkage has been identified is increasing, attesting further to the biological heterogeneity of the disorder. At the cellular level, derangements in cytoskeletal protein and glutamate metabolism, mitochondrial function, and in glial interactions are clearly evident. When considered in this fashion, ALS can be justifiably considered a disorder of multiple biological processes sharing in common the degeneration of motor neurons.
Collapse
Affiliation(s)
- M J Strong
- Department of Clinical Neurological Sciences, The University of Western Ontario, London, Canada
| |
Collapse
|
43
|
|
44
|
Shahani N, Gourie-Devi M, Nalini A, Raju TR. Cyclophosphamide attenuates the degenerative changes induced by CSF from patients with amyotrophic lateral sclerosis in the neonatal rat spinal cord. J Neurol Sci 2001; 185:109-18. [PMID: 11311291 DOI: 10.1016/s0022-510x(01)00479-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our earlier studies have shown that cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS), when intrathecally injected into the neonatal rats, produces an aberrant phosphorylation of neurofilaments (NF) in the ventral horn neurons and reactive astrogliosis in the spinal cord. We wanted to investigate the effect of cyclophosphamide in the spinal cords of neonatal rats exposed to ALS-CSF. A single dose (5 microg in 5 microl saline) of cyclophosphamide was injected, 24 h after the administration of CSF samples from ALS and non-ALS neurological patients into the spinal subarachnoid space of 3-day-old rat pups. Rats were sacrificed after a period of 24 h, and stained with antibodies against the phosphorylated NF (SMI-31 antibody) and glial fibrillary acidic protein (GFAP). Cyclophosphamide treatment resulted in a 50% decrease in the number of SMI-31 stained neuronal soma in ventral horns of spinal cords of ALS-CSF exposed rats. This was accompanied by a decrease in the number of GFAP immunoreactive astrocytes. Furthermore, lactate dehydrogenase (LDH) activity was also decreased significantly, following cyclophosphamide treatment. These results suggest that cyclophosphamide could exert a neuroprotective effect against the neurotoxic action of factor(s) present in the ALS-CSF.
Collapse
Affiliation(s)
- N Shahani
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS) P.O. Box 2900, Hosur Road, 560 029, Bangalore, India
| | | | | | | |
Collapse
|
45
|
Meininger V. Clinical trials: the past, a lesson for the future. AMYOTROPHIC LATERAL SCLEROSIS AND OTHER MOTOR NEURON DISORDERS : OFFICIAL PUBLICATION OF THE WORLD FEDERATION OF NEUROLOGY, RESEARCH GROUP ON MOTOR NEURON DISEASES 2001; 2 Suppl 1:S15-8. [PMID: 11465918 DOI: 10.1080/14660820152415681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Numerous drugs have been tested in amyotrophic lateral sclerosis with the expectation both that they will treat patients and improve our understanding of some of the basic mechanisms of the disease. Most of these trials were considered to be negative. Careful analysis of the trials does not allow us to clearly discard any of the tested drugs, or any of the suspected mechanisms. Expectations for the future are that: a) we need to be realistic about what to expect; b) we have to define clearly our end-points; c) we have to calculate the expected power before the trials, not after; and d) we have to improve our understanding of the pharmacology.
Collapse
|
46
|
Abstract
Current knowledge of sporadic degenerative disorders suggests that, despite their multifactorial etiopathogenesis, genetics plays a primary role in orchestrating the pathological events, and even dramatically changes the disease phenotype from patient to patient. Genes may act as susceptibility factors, increasing the risk of disease development, or may operate as regulatory factors, modulating the magnitude and severity of pathogenic processes or the response to drug treatment. The goal of pharmacogenomics is the application of this knowledge to elaborate more specific and effective treatments and to tailor therapies to individual patients according to their genetic profile. Here, we outline the leading theories on the etiopathogenesis of neurodegenerative diseases, including amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer disease, and we review the potential role of genetic variations, such as gene mutations and polymorphisms, in each context. We also suggest potential targets for new therapeutic approaches and variability factors for current treatments based on genotype features. Finally, we propose a few options of preventive therapeutic interventions in patients with a high genetic risk of disease.
Collapse
Affiliation(s)
- D Maimone
- Department of Neurology, Ospedale Garibaldi, Piazza S. Maria di Gesù 5, 95123 Catania, Italy
| | | | | |
Collapse
|
47
|
Abstract
We used an ELISA technique to measure IgG and IgM antibodies to the ganglioside GM1, with the results expressed in arbitrary units. We tested 1007 sera from patients with peripheral neuropathy or muscle weakness. For IgG and IgM antibodies, the distribution of results differed significantly from a normal distribution. In the patient group, 81 of 1007 sera had elevated levels of IgG antibodies (> 10 units). Of these, 11 patients had very high levels (> 50 units). These 11 patients had diagnoses of GBS (4), motor neurone disease (3) or non-specific idiopathic neuropathy (4). For IgM antibodies, 115 of 1007 sera were positive (> 20 units). Of these, 18 patients had very high levels (> 50 units). These 18 patients had diagnoses of Guillain-Barré syndrome or Miller Fisher syndrome (4), multifocal motor neuropathy (4), motor neurone disease (2), non-specific neuropathy (2). We conclude that anti-GM1 antibodies in high titre are uncommon. Patients with multifocal motor neuropathy have high levels of antibody. However, patients with other disorders may also have high levels, so that anti-GM1 antibody levels alone are not a specific test for multifocal motor neuropathy. We found that antibodies to GM1 were present in the sera of patients with chronic idiopathic neuropathy, leading us to suggest that these antibodies may sometimes arise as a secondary response to disease.
Collapse
Affiliation(s)
- P A McCombe
- Department of Medicine, University of Queensland, Clinical Sciences Building, Royal Brisbane Hospital, QLD, 4029, Australia
| | | | | |
Collapse
|
48
|
Abstract
More than a century after its initial clinicopathologic description, amyotrophic lateral sclerosis (ALS) remains a largely fatal, progressive neurodegenerative disorder for which few efficacious pharmacotherapies with an impact directly on the natural course of the illness exist. The only currently approved therapy, the antiglutamatergic agent riluzole, has been shown to have only a marginal survival benefit in the absence of changes in functional assessments during the disease course. The efficacy of recombinant human insulin-like growth factor (rhIGF-1) remains controversial. In light of this, the primary focus of treatment for individuals with ALS remains symptomatic, through a multidisciplinary team approach including physicians, nurses, speech/language pathologists, physical therapists, occupational therapists, dietitians, social workers, and respiratory therapists.
Collapse
Affiliation(s)
- BM Demaerschalk
- Room 7OF10, University Campus, London Health Sciences Centre, 339 Windermere Road, London, Ontario N6A 5A5, Canada
| | | |
Collapse
|
49
|
Beck M, Giess R, Würffel W, Magnus T, Ochs G, Toyka KV. Comparison of maximal voluntary isometric contraction and Drachman's hand-held dynamometry in evaluating patients with amyotrophic lateral sclerosis. Muscle Nerve 1999; 22:1265-70. [PMID: 10454724 DOI: 10.1002/(sici)1097-4598(199909)22:9<1265::aid-mus15>3.0.co;2-f] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Maximal voluntary isometric contraction (MVIC) is a standard tool for assessment of muscle strength in treatment trials for amyotrophic lateral sclerosis (ALS). There is need for more practical bedside techniques especially for severely disabled patients. Hand-held dynamometry (HH-Dyn) is an inexpensive and easy-to-handle device. MVIC was measured in five proximal muscle groups bilaterally and compared with HH-Dyn in 43 ALS patients. After a training period we found good intrarater correlation for HH-Dyn (r = 0.99), with a low coefficient of variation. Measurements tended to become more accurate after repeated testing due to practice effects in examiners and patients. Overall correlation between HH-Dyn and MVIC was good [r = 0.85 (P < 0.01)]. Strength-range-specific analysis showed a significant linear correlation up to 20 kg (44 lbs.) [r = 0.57 (P < 0.01)]. However, we found a tendency to underestimate muscle strength above 10 kg by HH-Dyn as compared with MVIC, but this became meaningful only above a force of 20 kg. HH-Dyn provides a strength estimate with a precision close to MVIC in weak muscle groups (MRC grade 4). With standardization and appropriate training, HH-Dyn is a useful bedside test, providing an alternative to MVIC for follow-up assessment in ALS.
Collapse
Affiliation(s)
- M Beck
- Department of Neurology, Julius-Maximilians-University Wuerzburg, Josef-Schneider Strasse 11, D-97080 Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Gourie-Devi M, Nalini A, Subbakrishna DK. Temporary amelioration of symptoms with intravenous cyclophosphamide in amyotrophic lateral sclerosis. J Neurol Sci 1997; 150:167-72. [PMID: 9268246 DOI: 10.1016/s0022-510x(97)00083-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Based on the evidence that autoimmunity may play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS), a variety of immunomodulating agents have been used in the treatment. In an uncontrolled trial we treated 44 patients of ALS with intravenous cyclophosphamide (IVCP) at a total dose of 1.5 g/m2 given over a period of 8 to 10 days. The patients were evaluated using neurological score which included bulbar, motor and daily activity scores before and following treatment. Twenty three patients showed a significant improvement (P=<0.001) in the composite and the individual scores. The improvement persisted only for 2 to 3 months. Amongst them the severely (7) and moderately (16) affected (score less than or more than 150) showed almost a similar response to treatment. A comparison of the improved group of 23 patients with the unimproved group of 21 patients did not reveal any significant factors which influenced the response to IVCP. However, there was a suggestion that patients below the age of 60 years and a duration of illness less than 12 months may respond to the drug. In conclusion, treatment with intravenous cyclophosphamide resulted in mild and temporary improvement in clinical status of the patients with amyotrophic lateral sclerosis. This may be considered as an alternative method of treatment in developing countries where newer drugs are not available and affordable.
Collapse
Affiliation(s)
- M Gourie-Devi
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | | | | |
Collapse
|