1
|
The human GLUD2 glutamate dehydrogenase: localization and functional aspects. Neurochem Int 2009; 55:52-63. [PMID: 19428807 DOI: 10.1016/j.neuint.2009.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
Abstract
In all mammals, glutamate dehydrogenase (GDH), an enzyme central to the metabolism of glutamate, is encoded by a single gene (GLUD1 in humans) which is expressed widely (housekeeping). Humans and other primates also possess a second gene, GLUD2, which encodes a highly homologous GDH isoenzyme (hGDH2) expressed predominantly in retina, brain and testis. There is evidence that GLUD1 was retro-posed <23 million years ago to the X chromosome, where it gave rise to GLUD2 through random mutations and natural selection. These mutations provided the novel enzyme with unique properties thought to facilitate its function in the particular milieu of the nervous system. hGDH2, having been dissociated from GTP control (through the Gly456Ala change), is mainly regulated by rising levels of ADP/l-leucine. To achieve full-range regulation by these activators, hGDH2 needs to set its basal activity at low levels (<10% of full capacity), a property largely conferred by the evolutionary Arg443Ser change. Studies of structure/function relationships have identified residues in the regulatory domain of hGDH2 that modify basal catalytic activity and regulation. In addition, enzyme concentration and buffer ionic strength can influence basal enzyme activity. While mature hGDH1 and hGDH2 isoproteins are highly homologous, their predicted leader peptide sequences show a greater degree of divergence. Study of the subcellular sites targeted by hGDH2 in three different cultured cell lines using a GLUD2/EGFP construct revealed that hGDH2 localizes mainly to mitochondria and to a lesser extent to the endoplasmic reticulum of these cells. The implications of these findings for the potential role of this enzyme in the biology of the nervous system in health and disease are discussed.
Collapse
|
2
|
Strong MJ. Amyotrophic lateral sclerosis: contemporary concepts in etiopathogenesis and pharmacotherapy. Expert Opin Investig Drugs 2006; 13:1593-614. [PMID: 15566317 DOI: 10.1517/13543784.13.12.1593] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Among the neurodegenerative diseases associated with ageing, amyotrophic lateral sclerosis (ALS) remains the most devastating. The disease inexorably progresses, the vast majority of pharmacotherapies have failed to modify the disease course, death ensues on average within 5 years of symptom onset and increasing numbers of individuals are afflicted with the disease. However, significant advances in our understanding of the natural history of ALS and of the fundamental nature of the biological defect underlying motor neuron degeneration have been gained, providing hope for the development of novel pharmacotherapies for ALS. Among these is the recognition that ALS is a biologically heterogeneous disorder in which genetics, environment and ageing all interrelate. The observation of clinical heterogeneity, with initial clinical manifestations serving as predictors of survivorship, is of considerable importance in designing therapeutic trials. The presence of frontotemporal dysfunction in a subset of patients has led to increased interest in the relationship between ALS and the degenerative tauopathies. Ultimately, the degenerating motor neurons do not die alone. The contribution of both microglia and astrocytes to the degenerative process are increasingly recognised. Understanding how these processes interrelate has become critical to understanding the pharmacotherapy of ALS and in the design of clinical trials. This review will highlight recent epidemiological and neurochemical advances in our understanding of ALS, and place them into the context of understanding the development of novel treatment avenues for this devastating disease.
Collapse
Affiliation(s)
- Michael J Strong
- Department of Clinical Neurological Sciences, University of Western Ontario, The Robarts Research Institute, London, Canada.
| |
Collapse
|
3
|
Abstract
Once thought to be a single pathological disease state, amyotrophic lateral sclerosis (ALS) is now recognized to be the limited phenotypic expression of a complex, heterogeneous group of biological processes, resulting in an unrelenting loss of motor neurons. On average, individuals affected with the disease live <5 years. In this article, the complex nature of the pathogenesis of ALS, including features of age dependency, environmental associations, and genetics, is reviewed. Once held to be uncommon, it is now clear that ALS is associated with a frontotemporal dementia and that this process may reflect disturbances in the microtubule-associated tau protein metabolism. The motor neuron ultimately succumbs in a state where significant disruptions in neurofilament metabolism, mitochondrial function, and management of oxidative stress exist. The microenvironment of the neuron becomes a complex milieu in which high levels of glutamate provide a source of chronic excitatory neurotoxicity, and the contributions of activated microglial cells lead to further cascades of motor neuron death, perhaps serving to propagate the disease once established. The final process of motor neuron death encompasses many features of apoptosis, but it is clear that this alone cannot account for all features of motor neuron loss and that aspects of a necrosis-apoptosis continuum are at play. Designing pharmacological strategies to mitigate against this process thus becomes an increasingly complex issue, which is reviewed in this article.
Collapse
Affiliation(s)
- Michael J Strong
- Department of Clinical Neurological Sciences, Robarts Research Institute, Room 7OF 10, University Campus, London Health Sciences Centre, University of Western Ontario, 339 Windermere Road, London, Ontario, Canada N6A 5A5.
| |
Collapse
|
4
|
Strong MJ. Progress in clinical neurosciences: the evidence for ALS as a multisystems disorder of limited phenotypic expression. Can J Neurol Sci 2001; 28:283-98. [PMID: 11766772 DOI: 10.1017/s0317167100001505] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Traditionally, amyotrophic lateral sclerosis (ALS) is considered to be a unique neurodegeneration disorder in which motor neurons are selectively vulnerable to a single disease process. Our current understanding of ALS, however, suggests that this is far too limited an approach. While motor neuron degeneration remains the central component to this process, there is considerable phenotypic variability including broad ranges in survivorship and the presence or absence of cognitive impairment. The number of familial variants of ALS for which unique genetic linkage has been identified is increasing, attesting further to the biological heterogeneity of the disorder. At the cellular level, derangements in cytoskeletal protein and glutamate metabolism, mitochondrial function, and in glial interactions are clearly evident. When considered in this fashion, ALS can be justifiably considered a disorder of multiple biological processes sharing in common the degeneration of motor neurons.
Collapse
Affiliation(s)
- M J Strong
- Department of Clinical Neurological Sciences, The University of Western Ontario, London, Canada
| |
Collapse
|
5
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
6
|
Trotti D, Aoki M, Pasinelli P, Berger UV, Danbolt NC, Brown RH, Hediger MA. Amyotrophic lateral sclerosis-linked glutamate transporter mutant has impaired glutamate clearance capacity. J Biol Chem 2001; 276:576-82. [PMID: 11031254 DOI: 10.1074/jbc.m003779200] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the functional impact of a naturally occurring mutation of the human glutamate transporter GLT1 (EAAT2), which had been detected in a patient with sporadic amyotrophic lateral sclerosis. The mutation involves a substitution of the putative N-linked glycosylation site asparagine 206 by a serine residue (N206S) and results in reduced glycosylation of the transporter and decreased uptake activity. Electrophysiological analysis of N206S revealed a pronounced reduction in transport rate compared with wild-type, but there was no alteration in the apparent affinities for glutamate and sodium. In addition, no change in the sensitivity for the specific transport inhibitor dihydrokainate was observed. However, the decreased rate of transport was associated with a reduction of the N206S transporter in the plasma membrane. Under ionic conditions, which favor the reverse operation mode of the transporter, N206S exhibited an increased reverse transport capacity. Furthermore, if coexpressed in the same cell, N206S manifested a dominant negative effect on the wild-type GLT1 activity, whereas it did not affect wild-type EAAC1. These findings provide evidence for a role of the N-linked glycosylation in both cellular trafficking and transport function. The resulting alteration in glutamate clearance capacity likely contributes to excitotoxicity that participates in motor neuron degeneration in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- D Trotti
- Membrane Biology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Vielhaber S, Winkler K, Kirches E, Kunz D, Büchner M, Feistner H, Elger CE, Ludolph AC, Riepe MW, Kunz WS. Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis. J Neurol Sci 1999; 169:133-9. [PMID: 10540022 DOI: 10.1016/s0022-510x(99)00236-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitochondrial function in skeletal muscle was investigated in skeletal muscle biopsies of 26 patients with sporadic amyotrophic lateral sclerosis (ALS) and compared with investigations of 28 age-matched control muscle samples and biopsies of 6 patients with spinal muscular atrophy (SMA) and two patients with Tay-Sachs disease. In comparison to the control, SMA and Tay-Sachs biopsies, we observed in the ALS samples a significant about two-fold lower activity of complex I of mitochondrial respiratory chain. To visualise the distribution of the mitochondrial defect in skeletal muscle fibers we applied confocal laser-scanning microscopy and video fluorescence microscopy of NAD(P)H and fluorescent flavoproteins. The redox change of mitochondrial NAD(P)H and flavoproteins on addition of mitochondrial substrates, ADP, or cyanide were determined by measurement of fluorescence intensities with dual-photon UV-excitation and single-photon blue excitation. In skeletal muscle fibers of ALS patients with abnormalities of mitochondrial DNA (multiple deletions, n=1, or lower mtDNA levels, n=14) we observed a heterogeneous distribution of the mitochondrial defects among individual fibers and even within single fibers. In some patients (n=3) a mitochondrial defect was also detectable in cultivated skin fibroblasts. These findings support the viewpoint that the observed impairment of mitochondrial function in muscle of certain ALS patients is caused by an intrinsic mitochondrial defect which may be of pathophysiological significance in the etiology of this neurodegenerative disease.
Collapse
Affiliation(s)
- S Vielhaber
- Klinik für Epileptologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53105, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- A C Ludolph
- Department of Neurology, University of Ulm, Germany.
| | | |
Collapse
|
9
|
Ludolph AC, Meyer T, Riepe MW. Antiglutamate therapy of ALS--which is the next step? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1999; 55:79-95. [PMID: 10335495 DOI: 10.1007/978-3-7091-6369-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which was thought to be untreatable for a long time. However, recent evidence in men indicates that antiglutamatergic strategies are the first to have an influence on its pathogenesis and slow down the disease process. Since the effect of the drugs is still small, this progress cannot only be seen as a success of the present but most also be acknowledged as a starting point for the future. How will these future studies look like? They will have to take into account that ALS presumably has a long preclinical period and they will use a number of novel compounds and treatment strategies which have recently been shown to be effective in a transgenic animal model. This also implies that we are likely to use combination therapies and have to try to treat patients early. The latter will be necessarily connected with the demand for a novel clinical attitude to the diagnosis of the disease.
Collapse
Affiliation(s)
- A C Ludolph
- Department of Neurology, University of Ulm, Federal Republic of Germany
| | | | | |
Collapse
|
10
|
Cooper B, Chebib M, Shen J, King NJ, Darvey IG, Kuchel PW, Rothstein JD, Balcar VJ. Structural selectivity and molecular nature of L-glutamate transport in cultured human fibroblasts. Arch Biochem Biophys 1998; 353:356-64. [PMID: 9606970 DOI: 10.1006/abbi.1998.0626] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Uptake of L-[3H]glutamate by monolayers of fibroblasts cultured from human embryonic skin has been studied in the presence of several nonradioactive structural analogs of glutamate and aspartate. Results have suggested that the structural specificites of glutamate transporters in cultured human fibroblasts are similar to those of glutamate transporters in the mammalian brain. Only subtle differences have been detected: in the mammalian cerebral cortex, enantiomers of threo-3-hydroxyaspartate are almost equipotent as inhibitors of L-[3H]glutamate uptake while, in human fibroblasts, the D-isomer has been found to be an order of magnitude less potent than the corresponding L-isomer. Kinetic analysis of a model in which substrates are recognized by the glutamate transporter binding site(s) as both alpha- and beta-amino acids indicated that such a mechanism cannot explain the apparent negative cooperativity characterizing the effects of D- and L-aspartate. Molecular modeling has been used to estimate the optimum conformation of L-glutamate as it interacts with the transporter(s). Flow cytometry has indicated that all fibroblasts in culture express at least moderate levels of four glutamate transporters cloned from human brain. Small subpopulations (< 3%) of cells, however, were strongly labeled with antibodies against EAAT1 (GLAST) and EAAT2 (GLT-1) transporters. We conclude that these two transporters--known to be strongly expressed in brain tissue--can be principally responsible for the "high affinity" transport of glutamate also in nonneural cells.
Collapse
Affiliation(s)
- B Cooper
- Department of Anatomy and Histology, University of Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|