1
|
Neurochemical profiles in hereditary ataxias: A meta-analysis of Magnetic Resonance Spectroscopy studies. Neurosci Biobehav Rev 2019; 108:854-865. [PMID: 31838195 DOI: 10.1016/j.neubiorev.2019.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is applied to investigate the neurochemical profiles of degenerative hereditary ataxias. This meta-analysis provides a quantitative review and reappraisal of MRS findings in spinocerebellar ataxias (SCA) and Friedreich ataxia (FA) available to date. From each study, changes in N-acetyl aspartate (NAA), choline-containing compounds (Cho) and myo-Inositol (mI) ratios to total creatine (Cr) were calculated for groups of patients (1499 patients in total: SCA1 = 223, SCA2 = 298, SCA3 = 711, SCA6 = 165, and FA = 102) relative to their own control group, mostly in cerebellum and pons. SCA1, 2, 3, 6, and FA patients showed overall decreased NAA/Cr compared to controls. Decreased Cho/Cr was visible in SCA1, 2, and 3 and elevated mI/Cr in SCA2 patients in cerebellum. In SCA6 and FA Cho/Cr and mI/Cr did not differ with respect to controls but SCA6 patients indicated higher Cho/Cr compared to SCA1 patients in cerebellum. SCA2 subjects showed the lowest NAA/Cr and Cho/Cr in cerebellum and the highest mI/Cr compared to controls and other genotypes, and therefore the most promising results for a potential biomarker.
Collapse
|
2
|
Deelchand DK, Joers JM, Ravishankar A, Lyu T, Emir UE, Hutter D, Gomez CM, Bushara KO, Lenglet C, Eberly LE, Öz G. Sensitivity of Volumetric Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy to Progression of Spinocerebellar Ataxia Type 1. Mov Disord Clin Pract 2019; 6:549-558. [PMID: 31538089 DOI: 10.1002/mdc3.12804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 12/30/2022] Open
Abstract
Background Spinocerebellar ataxia type 1 (SCA1) causes progressive degeneration of the cerebellum and brainstem. Volumetric magnetic resonance imaging (MRI) was shown to be more sensitive to disease progression than the most sensitive clinical measure, the Scale for the Assessment and Rating of Ataxia (SARA), in longitudinal studies, and magnetic resonance spectroscopy (MRS) was shown to detect neurochemical abnormalities with high sensitivity cross-sectionally in SCA1. Objectives The objectives of this study were to compare the sensitivities to change of volumetric MRI, MRS, and SARA in a 3-year longitudinal study in SCA1. Methods A total of 16 early-to-moderate stage patients with SCA1 (SARA 0-14) and 21 matched healthy participants were scanned up to 3 times with 1.5-year intervals. Ataxia severity was assessed with SARA. T1-weighted images and magnetic resonance spectra from the cerebellar vermis, cerebellar white matter, and pons were acquired at 3T. Results The pontine total N-acetylaspartate-to-myo-inositol ratio was the most sensitive MRS measure to change (-3.9 ± 4.6%/yr in SCA1 vs. -0.3 ± 3.5%/yr in controls; P < 0.02), and the pontine volume was the most sensitive MRI measure to change (-2.6 ± 1.2%/yr in SCA1 vs. -0.1 ± 1.2 in controls; P < 0.02). Effect size (mean percent change/standard deviation of percent change) of pontine volume was highest (-2.13) followed by pontine N-acetylaspartate-to-myo-inositol ratio (-0.84) and SARA (+0.60). The pontine N-acetylaspartate-to-myo-inositol ratio was abnormal for 1 premanifest patient at all visits and predicted study withdrawal as a result of disease progression in 3 patients. Conclusion Both MRI and MRS were more sensitive to disease progression than SARA in SCA1. Pontine volume was most sensitive to change, whereas MRS may have more sensitivity at the premanifest stage and predictive value for disease progression.
Collapse
Affiliation(s)
- Dinesh K Deelchand
- Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
| | - James M Joers
- Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
| | | | - Tianmeng Lyu
- Division of Biostatistics University of Minnesota Minneapolis MN USA
| | - Uzay E Emir
- Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
| | - Diane Hutter
- Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
| | | | - Khalaf O Bushara
- Department of Neurology University of Minnesota Minneapolis MN USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
| | - Lynn E Eberly
- Division of Biostatistics University of Minnesota Minneapolis MN USA
| | - Gülin Öz
- Center for Magnetic Resonance Research University of Minnesota Minneapolis MN USA
| |
Collapse
|
3
|
Yang A, Xiao XH, Wang ZL. Evaluation of normal changes in pons metabolites due to aging using turbo spectroscopic imaging. AJNR Am J Neuroradiol 2014; 35:2099-105. [PMID: 24994832 DOI: 10.3174/ajnr.a4031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE To date, MRS study of both normal and pathologic brains have focused mainly on the supratentorial regions; few studies have investigated the infratentorial regions. However, the pons, an important structure of the brain, is associated with many neurodegenerative diseases and is often damaged by brain trauma. For MRS study of pontine disease, one must obtain MRS reference data on normal metabolite levels in the pons, including data on how these levels vary with age. The aim of this study was to analyze normal, age-related, metabolic changes in the pons by using turbo spectroscopic imaging. MATERIALS AND METHODS Seventy-eight healthy subjects with ages ranging from 5 days to 78 years were included in this study. NAA/Cr, Cho/Cr, and Cho/NAA ratios were measured by using turbo spectroscopic imaging. The 78 cases were divided into 4 groups by age: 0-5, 6-20, 21-50, and older than 50 years. The metabolite levels were compared with observed age-related changes among the groups. RESULTS The normal mean pontine metabolite ratios obtained for the combined age groups were NAA/Cr, 2.44 ± 0.45 (mean); Cho/Cr, 1.93 ± 0.25; and Cho/NAA, 0.83 ± 0.28. Statistically significant differences were found in the NAA/Cr between the 0- to 5- and 6- to 20-year-old groups, and among the 6- to 20-, 21- to 50-, and older than 50-year-old groups. A statistically significant difference was found in Cho/Cr between the 0- to 5- and 6- to 20-year-old subjects; however, no differences were found among the 6- to 20-, 21- to 50-, and older than 50-year-old groups. Statistically significant differences in Cho/NAA were also found among the 4 age groups. The NAA/Cr at birth was low, it rose rapidly at 0-5 years, reaching a peak at approximately 10-20 years, and then gradually decreased. The Cho/Cr decreased rapidly at 0-5 years, then continued to decline, and was stable after 20 years of age. CONCLUSIONS Turbo spectroscopic imaging is a good method for analyzing normal changes in the pons metabolites during growth, maturation, and aging.
Collapse
Affiliation(s)
- A Yang
- From the Medical Imaging Center, Affiliated Zhongshan City Hospital of Sun Yat-sen University, Zhongshan City, Guangdong Province, China.
| | - X h Xiao
- From the Medical Imaging Center, Affiliated Zhongshan City Hospital of Sun Yat-sen University, Zhongshan City, Guangdong Province, China
| | - Z l Wang
- From the Medical Imaging Center, Affiliated Zhongshan City Hospital of Sun Yat-sen University, Zhongshan City, Guangdong Province, China
| |
Collapse
|
4
|
Mascalchi M, Vella A. Magnetic resonance and nuclear medicine imaging in ataxias. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:85-110. [PMID: 21827882 DOI: 10.1016/b978-0-444-51892-7.00004-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imaging techniques including computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET) have been widely applied to the investigation of patients with acute or chronic ataxias. Fundamentally, CT has a role in the emergency evaluation of the patient with acute ataxia to ascertain brainstem or cerebellar hemorrhage and to exclude a mass lesion in the posterior cranial fossa. Conventional MRI is the most frequently performed imaging investigation in patients with ataxia. It can support the diagnosis of acute cerebellitis and Wernicke encephalopathy by revealing T2 signal changes with a typical distribution. In patients with inherited or sporadic chronic ataxia it reveals three fundamental patterns of atrophy of the brainstem, cerebellum, and spinal cord which match the gross neuropathological descriptions. These are represented by olivopontocerebellar atrophy (OPCA), cortical cerebellar atrophy (CCA), and spinal atrophy (SA). A substantial correspondence exists among these patterns of atrophy shown by MRI and the etiological classification of inherited or acquired chronic ataxias. This, along with demonstration of T2 signal changes characteristic of some diseases, makes conventional MRI potentially useful for the diagnostic work-up of the single patient, especially in the case of a sporadic disease. Non-conventional MR techniques including diffusion MR, spectroscopy, and functional MR have been used in patients with acute or chronic ataxia, but their exact role in the evaluation of the single patient is not established yet. They are currently investigated as potential tools to monitor progression of neurodegeneration in chronic ataxia and to serve as "surrogate markers" in clinical trials. Several radiotracers have been utilized in combination with SPECT and PET in patients with ataxia. Perfusion SPECT can reveal cerebellar blood flow abnormalities early in the course of cerebellitis. It has also been utilized to investigate perfusion of the brain in several inherited or sporadic chronic ataxic diseases, contributing to improved understanding of the pathophysiology of these conditions. Recently, perfusion SPECT has been tested as a "surrogate marker" to verify the effects of newly developed therapies in patients with a variety of chronic ataxias. Whole-body FDG-PET is recommended in patients with suspected paraneoplastic cerebellar degeneration to detect the primary malignancy. Brain FDG-PET has provided important information on the pathophysiology of several acquired and inherited conditions. PET and SPECT with radiotracers able to assess the nigrostriatal system or the density of D2 dopamine receptors in the striatum are increasingly used in patients with adult-onset sporadic ataxia for the differential diagnosis between multiple system atrophy in which overt striatal abnormalities are found and idiopathic late-onset cerebellar ataxia in which no abnormality is detected.
Collapse
Affiliation(s)
- Mario Mascalchi
- Radiodiagnostic Section, Department of Clinical Physiopathology, University of Florence, Italy.
| | | |
Collapse
|
5
|
Oz G, Tkáč I. Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn Reson Med 2010; 65:901-10. [PMID: 21413056 DOI: 10.1002/mrm.22708] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 10/04/2010] [Accepted: 10/08/2010] [Indexed: 11/08/2022]
Abstract
A short echo time (TE = 24 ms) semiadiabatic localization by adiabatic selective refocusing (LASER) sequence was designed and optimized for full-intensity proton magnetic resonance spectroscopy ((1) H MRS) at 4 T. The sequence was combined with VAPOR water suppression and three-dimensional outer volume suppression for improved localization and suppression of unwanted coherences. Artifact-free, single-shot spectra were obtained from the human brain with a spectral pattern almost identical to that obtained with an ultra-short TE (TE = 5 ms) stimulated-echo acquisition mode (STEAM) sequence as a result of the train of adiabatic refocusing pulses in semi-LASER that reduce the apparent TE. Approximately 2-fold higher signal intensity relative to STEAM was demonstrated in phantoms and the human brain. To test the performance of the sequence in clinically relevant brain regions with a volume coil, semi-LASER spectra were acquired from three cerebellar and brainstem volumes of interest (VOIs) in 23 healthy subjects. Ultra-short echo STEAM spectra were acquired from the same VOIs to compare neurochemical profiles obtained with semi-LASER with those obtained with STEAM. Neurochemical profiles of the cerebellum and brainstem acquired by these two techniques were nearly identical, validating the accuracy of the metabolite concentrations obtained with semi-LASER at the longer TE relative to STEAM. A high correlation between metabolite concentrations obtained by these two proton (1) H MRS techniques indicated the sensitivity to detect intersubject variation in metabolite levels.
Collapse
Affiliation(s)
- Gülin Oz
- Center for MR Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
6
|
Lin Y, Gu T, Chen Z, Kennedy S, Jacob M, Zhong J. High-resolution MRS in the presence of field inhomogeneity via intermolecular double-quantum coherences on a 3-T whole-body scanner. Magn Reson Med 2010; 63:303-11. [PMID: 20099324 DOI: 10.1002/mrm.22224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signals from intermolecular double-quantum coherences (iDQCs) have been shown to be insensitive to macroscopic field inhomogeneities and thus enable acquisition of high- resolution MR spectroscopy in the presence of large inhomogeneous fields. In this paper, localized iDQC (1)H spectroscopy on a whole-body 3-T MR scanner is reported. Experiments with a brain metabolite phantom were performed to quantify characteristics of the iDQC signal under different conditions. The feasibility of in vivo iDQC high-resolution MR spectroscopy in the presence of large intrinsic and external field inhomogeneity (in the order of hundreds of hertz) was demonstrated in the whole cerebellum of normal volunteers in a scan time of about 6.5 min. Major metabolite peaks were well resolved in the reconstructed one-dimensional spectra projected from two-dimensional iDQC acquisitions. Investigations on metabolite ratios, signal-to-noise ratio, and line width were performed and compared with results obtained with conventional point-resolved spectroscopy/MR spectroscopy in homogeneous fields. Metabolite ratios from iDQC results showed excellent consistency under different in vitro and in vivo conditions, and they were similar to those from point-resolved spectroscopy with small voxel sizes in homogeneous fields. MR spectroscopy with iDQCs can be applied potentially for quantification of gross metabolite changes due to diseases in large brain volumes with high field inhomogeneity.
Collapse
Affiliation(s)
- Yanqin Lin
- Department of Imaging Sciences, University of Rochester, Rochester, New York 14642-8648, USA
| | | | | | | | | | | |
Collapse
|
7
|
Parsons LM, Petacchi A, Schmahmann JD, Bower JM. Pitch discrimination in cerebellar patients: Evidence for a sensory deficit. Brain Res 2009; 1303:84-96. [DOI: 10.1016/j.brainres.2009.09.052] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 09/11/2009] [Accepted: 09/12/2009] [Indexed: 01/08/2023]
|
8
|
|
9
|
Kitamura K, Nakayama K, Kosaka S, Yamada E, Shimada H, Miki T, Inoue Y. Diffusion tensor imaging of the cortico-ponto-cerebellar pathway in patients with adult-onset ataxic neurodegenerative disease. Neuroradiology 2008; 50:285-92. [DOI: 10.1007/s00234-007-0351-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 11/29/2007] [Indexed: 12/13/2022]
|
10
|
Boesch SM, Wolf C, Seppi K, Felber S, Wenning GK, Schocke M. Differentiation of SCA2 from MSA-C using proton magnetic resonance spectroscopic imaging. J Magn Reson Imaging 2007; 25:564-9. [PMID: 17326083 DOI: 10.1002/jmri.20846] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To assess and compare biochemical and volumetric features of the cerebellum in patients with spinocerebellar ataxia type 2 (SCA2) and patients with the cerebellar variant of multiple system atrophy (MSA-C). MATERIALS AND METHODS Nine genetically assigned SCA2 patients and six MSA-C patients who met the clinical criteria of MSA-C underwent a clinical and neuroradiological workup with respect to cerebellar features. The MR protocol consisted of a sagittal T1-weighted three-dimensional fast low-angle shot (3D FLASH) sequence and a transversal T2- and spin-density-weighted turbo spin-echo sequence. The proton magnetic resonance spectroscopic imaging ((1)H-MRSI) protocol consisted of two chemical shift imaging (CSI) sequences (echo time (TE) = 20 and 135 msec). RESULTS Both short- and long-TE MR spectroscopy (MRS) images showed significant decreases in values for N-acetylaspartate to creatine (NAA/Cr), and choline to creatine (Cho/Cr) ratios in MSA-C and SCA2 compared to normal controls, though there was no difference between the two patient groups. In contrast, distinct cerebellar lactate (Lac) peaks were detected in seven SCA2 patients, and small peaks were detected in two. However, we did not detect any definite Lac peak in MSA-C or control subjects. CONCLUSION MRSI revealed Lac pathology in SCA2 but not in MSA-C. Whether this indicates distinct pathogenetic mechanisms of cerebellar degeneration remains to be established.
Collapse
Affiliation(s)
- Sylvia M Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
11
|
Viau M, Boulanger Y. Characterization of ataxias with magnetic resonance imaging and spectroscopy. Parkinsonism Relat Disord 2004; 10:335-51. [PMID: 15261875 DOI: 10.1016/j.parkreldis.2004.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 02/17/2004] [Accepted: 02/26/2004] [Indexed: 11/19/2022]
Abstract
A wide variety of autosomal transmitted ataxias exist and their ultimate characterization requires genetic testing. Common clinical characteristics among different ataxia types complicate the choice of the appropriate genetic test. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) generally show cerebellar or cerebral atrophy and perturbed metabolite levels which differ between ataxias. In order to help the clinician accurately identify the ataxia type, reported MRI and MRS data in different brain regions are summarized for more than 60 different types of autosomal inherited and sporadic ataxias.
Collapse
Affiliation(s)
- Martin Viau
- Département de Radiologie, Hôpital Saint-Luc, Centre Hospitalier de l'Université de Montréal, 1058 St-Denis, Montréal, Québec, Canada H2X 3J4
| | | |
Collapse
|
12
|
Lee SK, Mori S, Kim DJ, Kim SY, Kim SY, Chu M, Heo K, Lee BI, Kim DI. Diffusion Tensor MRI and Fiber Tractography of Cerebellar Atrophy in Phenytoin Users. Epilepsia 2003; 44:1536-40. [PMID: 14636324 DOI: 10.1111/j.0013-9580.2003.43502.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The usefulness of diffusion tensor magnetic resonance imaging (DT-MRI) is still in debate, and the development of clinically feasible scan protocol is encouraged. The purpose of this study was to investigate the afferent fiber system to the cerebellum in patients with phenytoin (PHT)-induced cerebellar atrophy in comparison with cerebellar atrophy of other etiologies by using DT-MRI. METHODS Thirteen patients (M/F ratio, 7:6; mean age, 42.5 years) and age-matched normal controls (n = 8) participated in this study. The patient group consisted of epilepsy patients who had received PHT therapy (n = 9) and clinically diagnosed as having olivopontocerebellar atrophy (OPCA; n = 4). DT-MRI was performed by using diffusion weighting of b = 600 s/mm2, and fractional anisotropy (FA) and color-coded vector maps were generated. FA of the middle cerebellar peduncle (MCP), the cerebellum, and transverse pontine fibers (TPF) was measured and compared between PHT and OPCA patients. RESULTS Normal subjects showed FA values of 0.81 +/- 0.07 in MCP, 0.69 +/- 0.04 in TPF, and PHT users showed FA values of 0.84 +/- 0.09 in MCP, 0.72 +/- 0.08 in TPF, and 0.21 +/- 0.04 in cerebellum. OPCA patients showed FA values of 0.39 +/- 0.11 in MCP, 0.46 +/- 0.12 in TPF, and 0.22 +/- 0.07 in cerebellum. PHT users showed a statistically significant reduction of FA only in cerebellum, whereas OPCA demonstrated significant decrease of FA in MCP, TPF, and cerebellum (one-way analysis of variance, p < 0.01). Three-dimensional reconstruction of fiber tracts demonstrated decreased volume and altered fiber integrity within the peduncles and transverse pontine fibers in the OPCA group, whereas fiber course patterns in PHT users were similar to those in controls. CONCLUSIONS PHT users showed normal orientation and anisotropy of MCP and TPF, whereas OPCA demonstrated impaired values, suggesting that PHT directly affects the cerebellum. DT-MRI can demonstrate detailed fiber configurations in degenerative diseases of brainstem and cerebellum and provides insight into the pathomechanisms of cerebellar atrophy.
Collapse
Affiliation(s)
- Seung-Koo Lee
- Department of Radiology, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bonavita S, Virta A, Jeffries N, Goldin E, Tedeschi G, Schiffmann R. Diffuse neuroaxonal involvement in mucolipidosis IV as assessed by proton magnetic resonance spectroscopic imaging. J Child Neurol 2003; 18:443-9. [PMID: 12940649 DOI: 10.1177/08830738030180070701] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mucolipidosis IV is an autosomal recessive disorder caused by mutations in MCOLN1, which codes for mucolipin, a transient receptor potential protein. In order to investigate brain metabolic abnormalities in mucolipidosis IV, we studied 14 patients (11 children, 3 adults) by proton magnetic resonance spectroscopic imaging. The ratios of N-acetylaspartate/ creatine-phosphocreatine and N-acetylaspartate/choline-containing compounds in patients with mucolipidosis IV were significantly reduced in all regions of interest except the parietal gray matter and thalamus. The ratios of choline-containing compounds/creatine-phosphocreatine was not significantly reduced in patients compared with controls. The ratio of N-acetylaspartate/creatine-phosphocreatine were significantly lower (P = .005) in the more neurologically impaired patients compared with the least impaired. For every region of interest, except for parietal gray matter, the ratio of N-acetylaspartate/creatine-phosphocreatine was lower in the more motorically impaired patient group. There was no difference for the ratio of N-acetylaspartate/creatine-phosphocreatine between younger and older patients. These findings suggest that mucolipidosis IV is largely a static developmental encephalopathy associated with diffuse neuronal and axonal damage or dysfunction. Mucolipin deficiency impairs motor more than sensory central nervous system pathways.
Collapse
Affiliation(s)
- Simona Bonavita
- Second Division of Neurology, Second University of Naples, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Mascalchi M, Brugnoli R, Guerrini L, Belli G, Nistri M, Politi LS, Gavazzi C, Lolli F, Argenti G, Villari N. Single-voxel long TE 1H-MR spectroscopy of the normal brainstem and cerebellum. J Magn Reson Imaging 2002; 16:532-7. [PMID: 12412029 DOI: 10.1002/jmri.10189] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To evaluate the feasibility of single voxel 1H-MRS of the CNS structures contained in the posterior cranial fossa and to determine the distribution of the normal metabolite ratios, concentrations, and T2 relaxation times in the midbrain, pons, medulla, dentate nucleus and cerebellar vermis. MATERIALS AND METHODS A total of 147 single voxel 1H-MR spectra with a point-resolved proton spectroscopy sequence (PRESS) sequence and echo time (TE) of 136 or 272 msec were obtained in the midbrain, pons, medulla, dentate, and vermis of 31 healthy volunteers. In seven additional patients; the concentrations and T2 relaxation times of metabolites were obtained in the same locations (except the medulla) with an external phantom calibration method and a four TE PRESS technique. RESULTS Ten (27%) of 36 spectra acquired in the medulla were of poor quality. A similar ranking of the N-acetyl aspartate (NAA)/creatine (Cr) ratio and choline(Cho)/Cr ratios in the five locations for the two TEs was observed, with the highest values in the pons (mean NAA/Cr = 4.16 +/- 0.6 and Cho/Cr =2.66 +/- 0.6 at TE 272) and the lowest values in the dentate and vermis (mean NAA/Cr = 1.66 +/- 0.2 and Cho/Cr = 1.20 +/- 0.2 at TE 272). The analysis of variance showed significant regional differences of the NAA and Cr concentrations, which had the highest values in the dentate. Non-significant regional differences were observed for the concentration of Cho and for the T2 of the metabolites. CONCLUSION With the exception of the medulla, single voxel 1H-MRS enables an in vivo biochemical analysis of the CNS structures contained in the posterior cranial fossa. Regional differences in the metabolite ratios and concentrations must be considered when employing 1H-MRS for evaluation of diseases of the brainstem and cerebellum.
Collapse
Affiliation(s)
- Mario Mascalchi
- Sezione di Radiodiagnostica, Dipartimento di Fisiopatologia Clinica, Università di Firenze, Firenze, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mascalchi M, Cosottini M, Lolli F, Salvi F, Tessa C, Macucci M, Tosetti M, Plasmati R, Ferlini A, Tassinari CA, Villari N. Proton MR spectroscopy of the cerebellum and pons in patients with degenerative ataxia. Radiology 2002; 223:371-8. [PMID: 11997539 DOI: 10.1148/radiol.2232010722] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate whether proton magnetic resonance (MR) spectroscopy is a useful complement to MR imaging in patients with degenerative ataxia. MATERIALS AND METHODS Brain MR imaging and single-voxel proton MR spectroscopy of the right cerebellar hemisphere and pons were performed in 30 patients with sporadic (n = 16) or inherited (n = 14) degenerative ataxia and in 20 healthy control subjects. Several indexes of brainstem and cerebellar atrophy were measured on MR images, as well as the N-acetylaspartate/creatine (NAA/Cr), choline/Cr (Cho/Cr), and myo-inositol/Cr (mI/Cr) ratios in the MR spectra. Differences between patients and subjects were evaluated with the Kruskal-Wallis and Mann-Whitney tests, whereas correlation of clinical, MR imaging, and spectroscopic data was assessed with nonparametric Spearman rank correlation. RESULTS Measurements of brainstem and cerebellar atrophy obtained from MR images revealed patients had olivopontocerebellar atrophy (OPCA) (n = 11), spinal atrophy (SA) (n = 8), or corticocerebellar atrophy (CCA) (n = 4). Seven patients did not fulfill the criteria for any group and were considered undefined. In patients with OPCA, the pontine and cerebellar NAA/Cr and Cho/Cr ratios were significantly decreased when compared with those of the control subjects. Pontine and cerebellar NAA/Cr ratios were also significantly reduced in patients with SA and CCA. Five patients with undefined ataxia had a substantial decrease of pontine or cerebellar NAA/Cr ratio when compared with that of the control subjects. In patients with OPCA, the pontine NAA/Cr ratio (but not the atrophy measurements) showed a correlation (P =.04) with disability. CONCLUSION MR spectroscopy is a useful complement to MR imaging in patients with degenerative ataxia.
Collapse
Affiliation(s)
- Mario Mascalchi
- Section of Diagnostic Radiology, Department of Clinical Physiopathology, University of Florence, Viale Morgagni 85, 50134 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Galanaud D, Le Fur Y, Nicoli F, Denis B, Confort-Gouny S, Ranjeva JP, Viout P, Pelletier J, Cozzone PJ. Regional metabolite levels of the normal posterior fossa studied by proton chemical shift imaging. MAGMA (NEW YORK, N.Y.) 2001; 13:127-33. [PMID: 11502427 DOI: 10.1007/bf02668161] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
MR spectroscopy of the posterior fossa is pitted with numerous technical difficulties. It is, however, of great clinical interest in the study of the degenerative diseases and tumors of this area. We have developed a method to perform 2D CSI of this area, by using a sagittal slice and a careful positioning of outer volume saturation. We performed this acquisition in 30 healthy volunteers to determine the normal metabolic ratios in five voxels of this area (mesencephalon, pons, medulla oblongata, vermis, cerebellar white matter). The main technical difficulty was magnetic field inhomogeneity in the lower brainstem generated by dental alloys. However, 88% of the voxels were of sufficient quality to be analyzed. The statistically significant regional variations were a higher NAA/Cr ratio in the pons than in the medulla oblongata, higher Cho/Cr in the pons than in the mesencephalon and higher Cho/Cr in the cerebellar white matter than in the vermis. We conclude that 2D CSI of the brainstem, although technically delicate can be performed in most patients.
Collapse
Affiliation(s)
- D Galanaud
- Centre de Résonance Magnétique Biologique et Médicale, CNRS UMR6612, Faculté de Médecine, 27, Bvd Jean Moulin, F-13005, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jacobs MA, Horská A, van Zijl PC, Barker PB. Quantitative proton MR spectroscopic imaging of normal human cerebellum and brain stem. Magn Reson Med 2001; 46:699-705. [PMID: 11590646 DOI: 10.1002/mrm.1248] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantitative, multislice proton MR spectroscopic imaging (MRSI) was used to investigate regional metabolite levels and ratios in the normal adult human posterior fossa. Six normal volunteers (36 +/- 3 years, five male, one female) were scanned on a 1.5 T scanner using multislice MRSI at long echo time (TE 280 msec). The entire cerebellum was covered using three oblique-axial slice locations, which also included the pons, mid-brain, insular cortex, and parieto-occipital lobe. Concentrations of N-acetylaspartate (NAA), choline (Cho), and creatine (Cr) were estimated using the phantom replacement technique. Regional variations of the concentrations were assessed using ANOVA (P < 0.05). High-resolution MRSI data was obtained in all subjects and brain regions examined. Metabolite concentrations (mM) (mean +/- SD) were as follows: cerebellar vermis: 2.3 +/- 0.4, 8.8 +/- 1.7 and 7.6 +/- 1.0 for Cho, Cr, and NAA respectively; cerebellar hemisphere: 2.2 +/- 0.6, 8.9 +/- 2.1, 7.5 +/- 0.8; pons 2.2 +/- 0.5, 4.3 +/- 1.1, 8.3 +/- 0.9; insular cortex, 1.8 +/- 0.5, 7.8 +/- 2, 8.0 +/- 1.1, parieto-occipital gray matter, 1.3 +/- 0.3, 5.7 +/- 1.1, 7.2 +/- 0.9, and occipital white matter, 1.4 +/- 0.3, 5.3 +/- 1.3, 7.5 +/- 0.8. Consistent with previous reports, significantly higher levels of Cr were found in the cerebellum compared to parieto-occipital gray and occipital white matter, and pons (P < 0.0001). NAA was essentially uniformly distributed within the regions chosen for analysis, with the highest level in the pons (P < 0.04). Cho was significantly higher in the cerebellum and pons than parieto-occipital gray and occipital white matter (P < 0.002) and was also higher in the pons than in the insular cortex (P < 0.05). Quantitative multislice MRSI of the posterior fossa is feasible and significant regional differences in metabolite concentrations were found.
Collapse
Affiliation(s)
- M A Jacobs
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | |
Collapse
|
18
|
Boesch SM, Schocke M, Bürk K, Hollosi P, Fornai F, Aichner FT, Poewe W, Felber S. Proton magnetic resonance spectroscopic imaging reveals differences in spinocerebellar ataxia types 2 and 6. J Magn Reson Imaging 2001; 13:553-9. [PMID: 11276099 DOI: 10.1002/jmri.1078] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The objective of this study was to investigate cerebellar metabolism in patients with autosomal dominant cerebellar ataxia type 1 (ADCA-I) carrying two distinct mutations of spinocerebellar ataxia (SCA). Non-invasive image-guided proton magnetic resonance spectroscopy imaging (1H-MRSI) was performed in 4 patients with SCA2, and 3 patients carrying the SCA6 mutation. For MRSI, we employed a spin-echo sequence (TR = 1500 msec, TE = 135 msec, slice thickness = 15 mm, FOV = 240 mm) and a stimulated-echo sequence (TR = 1500 msec, TE = 20 msec, slice thickness = 15 mm, FOV = 240 mm). Measures included the peak integral ratios of neuronal and glial markers [N-acetylaspartate (NA) to creatine (Cr), choline-containing compounds (CHO) to Cr, and lactate (LAC) to Cr]. We found NA:Cr ratios were significantly lower in patients with SCA2 (40.4% lower) compared to patients carrying the SCA6 mutation. CHO:Cr ratios differed between the two mutations using short echo time (30.8% lower in SCA2), but not when applying long echo time 1H-MRSI. Measurements using long echo time revealed LAC peaks in all SCA2 patients. 1H-MRSI revealed metabolic differences between SCA2 and SCA6 patients. NA:Cr ratios were significantly lower in patients with the SCA2 mutation compared to the SCA6 mutation, and LAC signals were obtained in the cerebella of SCA2 patients. In addition, CHO:Cr ratios showed different behavior using short and long TE, indicating differences in relaxation times of choline compounds in SCA2.
Collapse
Affiliation(s)
- S M Boesch
- Department of Neurology, University of Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sappey-Marinier D, Vighetto A, Peyron R, Broussolle E, Bonmartin A. Phosphorus and proton magnetic resonance spectroscopy in episodic ataxia type 2. Ann Neurol 1999; 46:256-9. [PMID: 10443893 DOI: 10.1002/1531-8249(199908)46:2<256::aid-ana17>3.0.co;2-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Localized phosphorus (31P) and proton (1H) magnetic resonance spectroscopy was performed in the cerebellum and the occipital lobe of 6 patients with episodic ataxia type 2. From use of 31P magnetic resonance spectroscopy, untreated patients showed decreased high-energy phosphate ratios in the cerebrum, and increased pH in the cerebellum and cerebrum, which normalized under acetazolamide. 1H magnetic resonance spectra demonstrated high lactate peaks in 3 of the 6 patients. These metabolic alterations, probably induced by the calcium channelopathy, may characterize episodic ataxia type 2.
Collapse
|
20
|
Tedeschi G, Bonavita S, Banerjee TK, Virta A, Schiffmann R. Diffuse central neuronal involvement in Fabry disease: a proton MRS imaging study. Neurology 1999; 52:1663-7. [PMID: 10331696 DOI: 10.1212/wnl.52.8.1663] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The in vivo determination of parenchymal involvement is important to evaluate disease burden. Proton MRS imaging (1H-MRSI) permits simultaneous measurement of N-acetylaspartate (NA), a putative neuron-specific molecule, choline-containing compounds, creatine-phosphocreatine, and lactate from four 15-mm slices divided into 0.84-mL single-volume elements. OBJECTIVE To assess the cortical and subcortical neuropathology in Fabry disease (FD). METHODS Regions of interest (ROIs) were selected from several cortical and subcortical locations in nine FD patients. Mean ROI metabolite ratios were compared with control values. RESULTS FD patients showed a widespread pattern of cortical and subcortical NA reduction. Seven patients showed discrete MRI abnormalities consisting of white matter hyperintensities or basal ganglia infarcts. CONCLUSION We found diffuse neuronal involvement in FD extending beyond the areas of MRI-visible cerebrovascular abnormalities. 1H-MRSI may become useful in therapeutic trials.
Collapse
Affiliation(s)
- G Tedeschi
- Neuroimaging Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
21
|
Tedeschi G, Bonavita S, Barton NW, Betolino A, Frank JA, Patronas NJ, Alger JR, Schiffmann R. Proton magnetic resonance spectroscopic imaging in the clinical evaluation of patients with Niemann-Pick type C disease. J Neurol Neurosurg Psychiatry 1998; 65:72-9. [PMID: 9667565 PMCID: PMC2170174 DOI: 10.1136/jnnp.65.1.72] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES 10 patients with Niemann-Pick disease type C (NP-C) were studied by proton magnetic resonance spectroscopic imaging (1H-MRSI) to assess the biochemical pathology of the brain and to determine whether this method can be useful to clinically evaluate these patients. METHODS 1H-MRSI permits the simultaneous measurement of N-acetyl aspartate (NA), compounds containing choline (Cho), creatine plus phosphocreatine (Cre), and lactate (Lac) signal intensities from four 15 mm slices divided into 0.84 ml single volume elements. Spectroscopic voxels were identified from seven regions of interest. RESULTS In patients with NP-C, NA/Cre was significantly decreased in the frontal and parietal cortices, centrum semiovale, and caudate nucleus; Cho/Cre was significantly increased in the frontal cortex and centrum semiovale. Significant correlations were found between clinical staging scale scores and 1H-MRSI abnormalities. CONCLUSION 1H-MRSI showed diffuse brain involvement in patients with NP-C consistent with the pathological features of the disease. 1H-MRSI is an objective and sensitive tool to neurologically evaluate patients with NP-C.
Collapse
Affiliation(s)
- G Tedeschi
- Neuroimaging Branch, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mascalchi M, Tosetti M, Plasmati R, Bianchi MC, Tessa C, Salvi F, Frontali M, Valzania F, Bartolozzi C, Tassinari CA. Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type 1. Ann Neurol 1998; 43:244-52. [PMID: 9485066 DOI: 10.1002/ana.410430215] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Linkage and DNA analysis, magnetic resonance (MR) imaging, and single-voxel proton MR spectroscopy were obtained in 10 members of an Italian kindred with spinocerebellar ataxia type 1 (SCA1). The size of the basis pontis, cerebellar hemispheres, middle cerebellar peduncles, and medulla oblongata were decreased in 4 members carrying the SCA1 gene, compared with 6 unaffected subjects. Diffuse signal changes in the pons and cerebellum were observed only in the carrier with the longest disease duration and greatest disability. The N-acetylaspartate/creatine ratio and the choline/creatine ratio in the basis pontis were markedly decreased in 2 symptomatic SCA1 carriers and moderately decreased in 2 asymptomatic SCA1 carriers, compared with the unaffected family members and a control group of 10 healthy volunteers. Minor decreases in the N-acetylaspartate/creatine ratio and the normal choline/creatine ratio were observed in the cerebellar hemisphere of the SCA1 carriers. Reduction of the N-acetylaspartate/creatine ratio, demonstrated by MR spectroscopy in the pons, is likely to reflect a loss of neuronal viability and might represent a biochemical marker of SCA1 more sensitive than brainstem and cerebellum atrophy and signal changes shown by MR imaging.
Collapse
Affiliation(s)
- M Mascalchi
- Cattedra di Radiologia, Università di Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) and proton magnetic resonance spectroscopic imaging (1H-MRSI) have been used to identify neuronal dysfunction and/or loss in vivo in patients with various neurological diseases, including amyotrophic lateral sclerosis/motor neuron disease (ALS/MND). Both long and short echo time (TE) proton spectroscopy reveal the brain metabolites choline (Cho), creatine/phosphocreatine (Cr), and N-acetyl (NA) groups. Because NA groups are localized to mature neurons and Cr is homogeneously distributed throughout the brain, the NA/Cr ratio is considered an index of neuronal integrity. Long TE proton spectroscopic studies have revealed significantly decreased NA/Cr values in the sensorimotor cortex and brainstem of patients with ALS, consistent with neuronal dysfunction and/or loss. The amount of NA/Cr decrease appears to be directly proportional to the degree of clinical upper motor neuron deficit. Short TE 1H-MRS and 1H-MRSI also reveal other metabolites such as glutamate (Glu) and glutamine (Gln), which have been implicated in the ALS/MND disease process. Preliminary results of short TE 1H-MRSI of the medulla in patients with ALS/MND have revealed significantly decreased NA/Cr values and abnormally elevated Glu+Gln/Cr ratios, compared to control individuals. The latter values were higher in patients with more rapid disease. Although it is unclear whether the elevation of Glu+Gln/Cr precedes or follows the neuronal (and axonal) degeneration in the medulla of these patients, its occurrence provides in vivo evidence of abnormal glutamate metabolism in the CNS parenchyma of patients with ALS/MND.
Collapse
Affiliation(s)
- E P Pioro
- Department of Neurology, The Cleveland Clinic Foundation, OH 44195, USA.
| |
Collapse
|