1
|
del Campo M, Zetterberg H, Gandy S, Onyike CU, Oliveira F, Udeh‐Momoh C, Lleó A, Teunissen CE, Pijnenburg Y. New developments of biofluid-based biomarkers for routine diagnosis and disease trajectories in frontotemporal dementia. Alzheimers Dement 2022; 18:2292-2307. [PMID: 35235699 PMCID: PMC9790674 DOI: 10.1002/alz.12643] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/31/2023]
Abstract
Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders with different phenotypes, genetic backgrounds, and pathological states. Its clinicopathological diversity challenges the diagnostic process and the execution of clinical trials, calling for specific diagnostic biomarkers of pathologic FTD types. There is also a need for biomarkers that facilitate disease staging, quantification of severity, monitoring in clinics and observational studies, and for evaluation of target engagement and treatment response in clinical trials. This review discusses current FTD biofluid-based biomarker knowledge taking into account the differing applications. The limitations, knowledge gaps, and challenges for the development and implementation of such markers are also examined. Strategies to overcome these hurdles are proposed, including the technologies available, patient cohorts, and collaborative research initiatives. Access to robust and reliable biomarkers that define the exact underlying pathophysiological FTD process will meet the needs for specific diagnosis, disease quantitation, clinical monitoring, and treatment development.
Collapse
Affiliation(s)
- Marta del Campo
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesMadridSpain
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,UK Dementia Research Institute at UCLLondonUK,Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK,Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Sam Gandy
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chiadi U Onyike
- Division of Geriatric Psychiatry and NeuropsychiatryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fabricio Oliveira
- Department of Neurology and NeurosurgeryEscola Paulista de MedicinaFederal University of São Paulo (UNIFESP)São PauloSão PauloBrazil
| | - Chi Udeh‐Momoh
- Ageing Epidemiology Research UnitSchool of Public HealthFaculty of MedicineImperial College LondonLondonUK,Translational Health SciencesFaculty of MedicineUniversity of BristolBristolUK
| | - Alberto Lleó
- Neurology DepartmentHospital de la Santa Creu I Sant PauBarcelonaSpain
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam University Medical CentersVrije UniversiteitAmsterdamthe Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| |
Collapse
|
2
|
Rai SK, Savastano A, Singh P, Mukhopadhyay S, Zweckstetter M. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease. Protein Sci 2021; 30:1294-1314. [PMID: 33930220 PMCID: PMC8197432 DOI: 10.1002/pro.4093] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Biomolecular condensation via liquid-liquid phase separation (LLPS) of intrinsically disordered proteins/regions (IDPs/IDRs), with and without nucleic acids, has drawn widespread interest due to the rapidly unfolding role of phase-separated condensates in a diverse range of cellular functions and human diseases. Biomolecular condensates form via transient and multivalent intermolecular forces that sequester proteins and nucleic acids into liquid-like membrane-less compartments. However, aberrant phase transitions into gel-like or solid-like aggregates might play an important role in neurodegenerative and other diseases. Tau, a microtubule-associated neuronal IDP, is involved in microtubule stabilization, regulates axonal outgrowth and transport in neurons. A growing body of evidence indicates that tau can accomplish some of its cellular activities via LLPS. However, liquid-to-solid transition resulting in the abnormal aggregation of tau is associated with neurodegenerative diseases. The physical chemistry of tau is crucial for governing its propensity for biomolecular condensation which is governed by various intermolecular and intramolecular interactions leading to simple one-component and complex multi-component condensates. In this review, we aim at capturing the current scientific state in unveiling the intriguing molecular mechanism of phase separation of tau. We particularly focus on the amalgamation of existing and emerging biophysical tools that offer unique spatiotemporal resolutions on a wide range of length- and time-scales. We also discuss the link between quantitative biophysical measurements and novel biological insights into biomolecular condensation of tau. We believe that this account will provide a broad and multidisciplinary view of phase separation of tau and its association with physiology and disease.
Collapse
Affiliation(s)
- Sandeep K. Rai
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Adriana Savastano
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Priyanka Singh
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Markus Zweckstetter
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Department for NMR‐based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
3
|
Truong DJJ, Phlairaharn T, Eßwein B, Gruber C, Tümen D, Baligács E, Armbrust N, Vaccaro FL, Lederer EM, Beck EM, Geilenkeuser J, Göppert S, Krumwiede L, Grätz C, Raffl G, Schwarz D, Zirngibl M, Živanić M, Beyer M, Körner JD, Santl T, Evsyukov V, Strauß T, Schwarz SC, Höglinger GU, Heutink P, Doll S, Conrad M, Giesert F, Wurst W, Westmeyer GG. Non-invasive and high-throughput interrogation of exon-specific isoform expression. Nat Cell Biol 2021; 23:652-663. [PMID: 34083785 PMCID: PMC8189919 DOI: 10.1038/s41556-021-00678-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/01/2021] [Indexed: 02/05/2023]
Abstract
Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing. We applied EXSISERS to quantify the inclusion of the disease-associated exon 10 in microtubule-associated protein tau (MAPT) in patient-derived induced pluripotent stem cells and screened Cas13-based RNA-targeting effectors for isoform specificity. We also coupled cell survival to the inclusion of exon 18b of FOXP1, which is involved in maintaining pluripotency of embryonic stem cells, and confirmed that MBNL1 is a dominant factor for exon 18b exclusion. EXSISERS enables non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions.
Collapse
Affiliation(s)
- Dong-Jiunn Jeffery Truong
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Teeradon Phlairaharn
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Bianca Eßwein
- grid.4567.00000 0004 0483 2525Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Christoph Gruber
- grid.4567.00000 0004 0483 2525Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Deniz Tümen
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.411941.80000 0000 9194 7179Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Enikő Baligács
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Niklas Armbrust
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Francesco Leandro Vaccaro
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva-Maria Lederer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva Magdalena Beck
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Julian Geilenkeuser
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Göppert
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Krumwiede
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Grätz
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Gerald Raffl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominic Schwarz
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Zirngibl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Milica Živanić
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Maren Beyer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Johann Dietmar Körner
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Santl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Valentin Evsyukov
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Department of Neurology, Technical University Munich, Munich, Germany ,grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Tabea Strauß
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Department of Neurology, Technical University Munich, Munich, Germany
| | - Sigrid C. Schwarz
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Department of Neurology, Technical University Munich, Munich, Germany
| | - Günter U. Höglinger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Department of Neurology, Technical University Munich, Munich, Germany ,grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Peter Heutink
- grid.10392.390000 0001 2190 1447Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Sebastian Doll
- grid.4567.00000 0004 0483 2525Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Marcus Conrad
- grid.4567.00000 0004 0483 2525Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.78028.350000 0000 9559 0613Laboratory of Experimental Oncology, National Research Medical University, Moscow, Russia
| | - Florian Giesert
- grid.4567.00000 0004 0483 2525Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Wolfgang Wurst
- grid.4567.00000 0004 0483 2525Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gil Gregor Westmeyer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Jayatunga DPW, Hone E, Bharadwaj P, Garg M, Verdile G, Guillemin GJ, Martins RN. Targeting Mitophagy in Alzheimer's Disease. J Alzheimers Dis 2020; 78:1273-1297. [PMID: 33285629 DOI: 10.3233/jad-191258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria perform many essential cellular functions including energy production, calcium homeostasis, transduction of metabolic and stress signals, and mediating cell survival and death. Maintaining viable populations of mitochondria is therefore critical for normal cell function. The selective disposal of damaged mitochondria, by a pathway known as mitophagy, plays a key role in preserving mitochondrial integrity and quality. Mitophagy reduces the formation of reactive oxygen species and is considered as a protective cellular process. Mitochondrial dysfunction and deficits of mitophagy have important roles in aging and especially in neurodegenerative disorders such as Alzheimer's disease (AD). Targeting mitophagy pathways has been suggested to have potential therapeutic effects against AD. In this review, we aim to briefly discuss the emerging concepts on mitophagy, molecular regulation of the mitophagy process, current mitophagy detection methods, and mitophagy dysfunction in AD. Finally, we will also briefly examine the stimulation of mitophagy as an approach for attenuating neurodegeneration in AD.
Collapse
Affiliation(s)
- Dona P W Jayatunga
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - Manohar Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Gilles J Guillemin
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| |
Collapse
|
5
|
Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. J Transl Med 2019; 99:993-1007. [PMID: 30742063 PMCID: PMC6609463 DOI: 10.1038/s41374-019-0196-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
We review the literature on Tau and TDP-43 proteinopathies in aged human brains and the relevant underlying pathogenetic cascades. Complex interacting pathways are implicated in Alzheimer's disease and related dementias (ADRD), wherein multiple proteins tend to misfold in a manner that is "reactive," but, subsequently, each proteinopathy may contribute strongly to the clinical symptoms. Tau proteinopathy exists in brains of individuals across a broad spectrum of primary underlying conditions-e.g., developmental, traumatic, and inflammatory/infectious diseases. TDP-43 proteinopathy is also expressed in a wide range of clinical disorders. Although TDP-43 proteinopathy was first described in the central nervous system of patients with amyotrophic lateral sclerosis (ALS) and in subtypes of frontotemporal dementia (FTD/FTLD), TDP-43 proteinopathy is also present in chronic traumatic encephalopathy, cognitively impaired persons in advanced age with hippocampal sclerosis, Huntington's disease, and other diseases. We list known Tau and TDP-43 proteinopathies. There is also evidence of cellular co-localization between Tau and TDP-43 misfolded proteins, suggesting common pathways or protein interactions facilitating misfolding in one protein by the other. Multiple pleiotropic gene variants can alter risk for Tau or TDP-43 pathologies, and certain gene variants (e.g., APOE ε4, Huntingtin triplet repeats) are associated with increases of both Tau and TDP-43 proteinopathies. Studies of genetic risk factors have provided insights into multiple nodes of the pathologic cascades involved in Tau and TDP-43 proteinopathies. Variants from a specific gene can be either a low-penetrant risk factor for a group of diseases, or alternatively, a different variant of the same gene may be a disease-driving allele that is associated with a relatively aggressive and early-onset version of a clinically and pathologically specific disease type. Overall, a complex but enlightening paradigm has emerged, wherein both Tau and TDP-43 proteinopathies are linked to numerous overlapping upstream influences, and both are associated with multiple downstream pathologically- and clinically-defined deleterious effects.
Collapse
|
6
|
Gallardo G, Holtzman DM. Antibody Therapeutics Targeting Aβ and Tau. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024331. [PMID: 28062555 DOI: 10.1101/cshperspect.a024331] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The astonishing findings that active and passive immunization against amyloid-β (Aβ) in mouse models of Alzheimer's disease (AD) dramatically decreased amyloid burden led to a rapid initiation of human clinical trials with much enthusiasm. However, methodological issues and adverse effects relating to these clinical trials arose, challenging the effectiveness and safety of these reagents. Efforts are now underway to develop safer immunotherapeutic approaches toward Aβ and the treatment of individuals at risk for AD before or in the earliest stages of cognitive decline with new hopes. Furthermore, several studies have shown tau as a potential immunotherapeutic target for the treatment of tauopathy-related diseases including frontotemporal lobar dementia (FTLD). Both active and passive immunization targeting tau in mouse models of tauopathy effectively decreased tau pathology while improving cognitive performance. These preclinical studies have highlighted tau as an alternative target with much anticipation of clinical trials to be undertaken.
Collapse
Affiliation(s)
- Gilbert Gallardo
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri 63110
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
7
|
Zhu Y, Shan X, Yuzwa SA, Vocadlo DJ. The emerging link between O-GlcNAc and Alzheimer disease. J Biol Chem 2014; 289:34472-81. [PMID: 25336656 DOI: 10.1074/jbc.r114.601351] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regional glucose hypometabolism is a defining feature of Alzheimer disease (AD). One emerging link between glucose hypometabolism and progression of AD is the nutrient-responsive post-translational O-GlcNAcylation of nucleocytoplasmic proteins. O-GlcNAc is abundant in neurons and occurs on both tau and amyloid precursor protein. Increased brain O-GlcNAcylation protects against tau and amyloid-β peptide toxicity. Decreased O-GlcNAcylation occurs in AD, suggesting that glucose hypometabolism may impair the protective roles of O-GlcNAc within neurons and enable neurodegeneration. Here, we review how O-GlcNAc may link cerebral glucose hypometabolism to progression of AD and summarize data regarding the protective role of O-GlcNAc in AD models.
Collapse
Affiliation(s)
- Yanping Zhu
- From the Departments of Molecular Biology and Biochemistry and Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Xiaoyang Shan
- From the Departments of Molecular Biology and Biochemistry and
| | - Scott A Yuzwa
- From the Departments of Molecular Biology and Biochemistry and
| | - David J Vocadlo
- From the Departments of Molecular Biology and Biochemistry and Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
8
|
Yuzwa SA, Vocadlo DJ. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Chem Soc Rev 2014; 43:6839-58. [PMID: 24759912 DOI: 10.1039/c4cs00038b] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is a growing problem for aging populations worldwide. Despite significant efforts, no therapeutics are available that stop or slow progression of AD, which has driven interest in the basic causes of AD and the search for new therapeutic strategies. Longitudinal studies have clarified that defects in glucose metabolism occur in patients exhibiting Mild Cognitive Impairment (MCI) and glucose hypometabolism is an early pathological change within AD brain. Further, type 2 diabetes mellitus (T2DM) is a strong risk factor for the development of AD. These findings have stimulated interest in the possibility that disrupted glucose regulated signaling within the brain could contribute to the progression of AD. One such process of interest is the addition of O-linked N-acetylglucosamine (O-GlcNAc) residues onto nuclear and cytoplasmic proteins within mammals. O-GlcNAc is notably abundant within brain and is present on hundreds of proteins including several, such as tau and the amyloid precursor protein, which are involved in the pathophysiology AD. The cellular levels of O-GlcNAc are coupled to nutrient availability through the action of just two enzymes. O-GlcNAc transferase (OGT) is the glycosyltransferase that acts to install O-GlcNAc onto proteins and O-GlcNAcase (OGA) is the glycoside hydrolase that acts to remove O-GlcNAc from proteins. Uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) is the donor sugar substrate for OGT and its levels vary with cellular glucose availability because it is generated from glucose through the hexosamine biosynthetic pathway (HBSP). Within the brains of AD patients O-GlcNAc levels have been found to be decreased and aggregates of tau appear to lack O-GlcNAc entirely. Accordingly, glucose hypometabolism within the brain may result in disruption of the normal functions of O-GlcNAc within the brain and thereby contribute to downstream neurodegeneration. While this hypothesis remains largely speculative, recent studies using different mouse models of AD have demonstrated the protective benefit of pharmacologically increased brain O-GlcNAc levels. In this review we summarize the state of knowledge in the area of O-GlcNAc as it pertains to AD while also addressing some of the basic biochemical roles of O-GlcNAc and how these might contribute to protecting against AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | | |
Collapse
|
9
|
Cook C, Dunmore JH, Murray ME, Scheffel K, Shukoor N, Tong J, Castanedes-Casey M, Phillips V, Rousseau L, Penuliar MS, Kurti A, Dickson DW, Petrucelli L, Fryer JD. Severe amygdala dysfunction in a MAPT transgenic mouse model of frontotemporal dementia. Neurobiol Aging 2013; 35:1769-77. [PMID: 24503275 DOI: 10.1016/j.neurobiolaging.2013.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 01/05/2023]
Abstract
Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) is a neurodegenerative tauopathy caused by mutations in the tau gene (MAPT). Individuals with FTDP-17 have deficits in learning, memory, and language, in addition to personality and behavioral changes that are often characterized by a lack of social inhibition. Several transgenic mouse models expressing tau mutations have been tested extensively for memory or motor impairments, though reports of amygdala-dependent behaviors are lacking. To this end, we tested the rTg4510 mouse model on a behavioral battery that included amygdala-dependent tasks of exploration. As expected, rTg4510 mice exhibit profound impairments in hippocampal-dependent learning and memory tests, including contextual fear conditioning. However, rTg4510 mice also display an abnormal hyperexploratory phenotype in the open-field assay, elevated plus maze, light-dark exploration, and cued fear conditioning, indicative of amygdala dysfunction. Furthermore, significant tau burden is detected in the amygdala of both rTg4510 mice and human FTDP-17 patients, suggesting that the rTg4510 mouse model recapitulates the behavioral disturbances and neurodegeneration of the amygdala characteristic of FTDP-17.
Collapse
Affiliation(s)
- Casey Cook
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Judy H Dunmore
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Kristyn Scheffel
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Nawsheen Shukoor
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | | | - Virginia Phillips
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Linda Rousseau
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Michael S Penuliar
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA; Neurobiology of Disease Program, Mayo Graduate School, Rochester, MN, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA; Neurobiology of Disease Program, Mayo Graduate School, Rochester, MN, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA; Neurobiology of Disease Program, Mayo Graduate School, Rochester, MN, USA.
| |
Collapse
|
10
|
Hu WT, Watts K, Grossman M, Glass J, Lah JJ, Hales C, Shelnutt M, Van Deerlin V, Trojanowski JQ, Levey AI. Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP. Neurology 2013; 81:1945-52. [PMID: 24174584 PMCID: PMC3843382 DOI: 10.1212/01.wnl.0000436625.63650.27] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/26/2013] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To validate the ability of candidate CSF biomarkers to distinguish between the 2 main forms of frontotemporal lobar degeneration (FTLD), FTLD with TAR DNA-binding protein 43 (TDP-43) inclusions (FTLD-TDP) and FTLD with Tau inclusions (FTLD-Tau). METHODS Antemortem CSF samples were collected from 30 patients with FTLD in a single-center validation cohort, and CSF levels of 5 putative FTLD-TDP biomarkers as well as levels of total Tau (t-Tau) and Tau phosphorylated at threonine 181 (p-Tau181) were measured using independent assays. Biomarkers most associated with FTLD-TDP were then tested in a separate 2-center validation cohort composed of subjects with FTLD-TDP, FTLD-Tau, Alzheimer disease (AD), and cognitively normal subjects. The sensitivity and specificity of FTLD-TDP biomarkers were determined. RESULTS In the first validation cohort, FTLD-TDP cases had decreased levels of p-Tau181 and interleukin-23, and increased Fas. Reduced ratio of p-Tau181 to t-Tau (p/t-Tau) was the strongest predictor of FTLD-TDP pathology. Analysis in the second validation cohort showed CSF p/t-Tau ratio <0.37 to distinguish FTLD-TDP from FTLD-Tau, AD, and healthy seniors with 82% sensitivity and 82% specificity. CONCLUSION A reduced CSF p/t-Tau ratio represents a reproducible, validated biomarker for FTLD-TDP with performance approaching well-established CSF AD biomarkers. Introducing this biomarker into research and the clinical arena can significantly increase the power of clinical trials targeting abnormal accumulations of TDP-43 or Tau, and select the appropriate patients for target-specific therapies. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that the CSF p/t-Tau ratio distinguishes FTLD-TDP from FTLD-Tau.
Collapse
Affiliation(s)
- William T Hu
- From the Department of Neurology (W.T.H., K.W., J.G., J.J.L., C.H., M.S., A.I.L.), Center for Neurodegenerative Diseases Research (W.T.H., K.W., J.G., J.J.L., C.H., A.I.L.), Alzheimer's Disease Research Center (W.T.H., J.G., J.J.L., C.H., A.I.L.), Emory University School of Medicine, Atlanta, GA; and Departments of Neurology (M.G.) and Laboratory Medicine and Pathology (V.V.D., J.Q.T.), University of Pennsylvania, Philadelphia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Johannsen L, Smith T, Havsager AM, Madsen C, Kjeldsen MJ, Dalsgaard NJ, Gaist D, Schrøder HD, Sindrup SH. Evaluation of patients with symptoms suggestive of chronic polyneuropathy. J Clin Neuromuscul Dis 2012; 3:47-52. [PMID: 19078654 DOI: 10.1097/00131402-200112000-00001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to determine the diagnostic yield and to describe the spectrum of diagnosis encountered by evaluation of patients with symptoms suggestive of chronic polyneuropathy. METHODS We prospectively evaluated 198 patients referred to a department of neurology with symptoms suggestive of polyneuropathy. The evaluation included nerve conduction studies with near-nerve technique, quantitative examination of temperature sensation, blood tests, chest x-rays, and skin biopsies as well as diagnostic tests for differential diagnoses. RESULTS Polyneuropathy was found in 147 patients, alternative diagnoses in 25, and 26 remained undiagnosed. The etiology of polyneuropathy could not be identified in 25% of the patients with polyneuropathy. In the remaining 75%, the cause of neuropathy was diabetes and/or alcohol abuse (41%), monoclonal gammopathy of undetermined significance (5%), drugs (5%), connective tissue disease (3%), and a number of less frequent conditions. A previously undiagnosed condition was found in 30% of the patients with polyneuropathy. CONCLUSION Evaluation of patients with symptoms suggestive of polyneuropathy reveals a high fraction of patients with previously undiagnosed conditions both in patients ending up with a polyneuropathy diagnosis and those without this diagnosis.
Collapse
Affiliation(s)
- L Johannsen
- From the Departments of *Neurology and daggerPathology, Odense University Hospital, Odense, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ogaki K, Li Y, Takanashi M, Ishikawa KI, Kobayashi T, Nonaka T, Hasegawa M, Kishi M, Yoshino H, Funayama M, Tsukamoto T, Shioya K, Yokochi M, Imai H, Sasaki R, Kokubo Y, Kuzuhara S, Motoi Y, Tomiyama H, Hattori N. Analyses of the MAPT, PGRN, and C9orf72 mutations in Japanese patients with FTLD, PSP, and CBS. Parkinsonism Relat Disord 2012; 19:15-20. [PMID: 22818528 DOI: 10.1016/j.parkreldis.2012.06.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/16/2012] [Accepted: 06/19/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mutations in the microtubule associated protein tau (MAPT) and progranulin (PGRN) have been identified in several neurodegenerative disorders, such as frontotemporal lobar degeneration (FTLD), progressive supranuclear palsy (PSP), and corticobasal syndrome (CBS). Recently, C9orf72 repeat expansion was reported to cause FTLD and amyotrophic lateral sclerosis (ALS). To date, no comprehensive analyses of mutations in these three genes have been performed in Asian populations. The aim of this study was to investigate the genetic and clinical features of Japanese patients with MAPT, PGRN, or C9orf72 mutations. METHODS MAPT and PGRN were analyzed by direct sequencing and gene dosage assays, and C9orf72 repeat expansion was analyzed by repeat-primed PCR in 75 (48 familial, 27 sporadic) Japanese patients with FTLD, PSP, or CBS. RESULTS We found four MAPT mutations in six families, one novel PGRN deletion/insertion, and no repeat expansion in C9orf72. Intriguingly, we identified a de novo MAPT p.S285R mutation. All six patients with early-onset PSP and the abnormal eye movements that are not typical of sporadic PSP had MAPT mutations. The gene dosages of MAPT and PGRN were normal. DISCUSSION MAPT p.S285R is the first reported de novo mutation in a sporadic adult-onset patient. MAPT mutation analysis is recommended in both familial and sporadic patients, especially in early-onset PSP patients with these abnormal eye movements. Although PGRN and C9orf72 mutations were rare in this study, the PGRN mutation was found in this Asian FTLD. These genes should be studied further to improve the clinicogenetic diagnoses of FTLD, PSP, and CBS.
Collapse
Affiliation(s)
- Kotaro Ogaki
- Department of Neurology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Frontotemporal lobar degeneration (FTLD) is a highly familial condition and is increasingly being recognized as an important form of dementia. The literature published on this disease is often difficult to collate due to the wide range in nomenclature used. Thankfully, consensus recommendations have now been published to address this issue and hopefully the community will adopt these as intended. Much progress has been made in our understanding of the clinical, pathological and genetic understanding of FTLD in recent years. Progranulin and TDP-43 have recently been identified as new important proteins involved in the pathophysiology of FTLD and this latter protein may have potential as a biomarker of this disease. However, much remains before we have a full picture of the genes that cause FTLD and the biological pathways in which they function. The purpose of this review is to summarize the current concepts and recent advances in our knowledge of this disease.
Collapse
Affiliation(s)
- S M Pickering-Brown
- Clinical Neurosciences Research Group, Faculty of Human and Medical Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
14
|
Kovacech B, Zilka N, Novak M. New age of neuroproteomics in Alzheimer's disease research. Cell Mol Neurobiol 2009; 29:799-805. [PMID: 19225878 DOI: 10.1007/s10571-009-9358-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/28/2009] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, a condition that gradually destroys brain cells and leads to progressive decline in mental functions. The disease is characterized by accumulation of misfolded neuronal proteins, amyloid and tau, into insoluble aggregates known as extracellular senile plaques and intracellular neurofibrillary tangles, respectively. However, only tau pathology appears to correlate with the progression of the disease and it is believed to play a central role in the progression of neurodegeneration. In AD, tau protein undergoes various types of posttranslational modifications, most notably hyperphosphorylation and truncation. Using four proteomics approaches we aimed to uncover the key steps leading to neurofibrillary degeneration and thus to identify therapeutic targets for AD. Functional neuroproteomics was employed to generate the first transgenic rat model of AD by expressing a truncated misordered form of tau, "Alzheimer's tau". The rat model showed that Alzheimer's tau toxic gain of function is responsible for the induction of abnormal tau cascade and is the driving force in the development of neurofibrillary degeneration. Structural neuroproteomics allowed us to determine partial 3D structure of the Alzheimer's filament core at a resolution of 1.6 A. Signaling neuroproteomics data lead to the identification and characterization of relevant phosphosites (the tau phosphosignalome) contributing to neurodegeneration. Interaction neuroproteomics revealed links to a new group of proteins interacting with Alzheimer's tau (tau interactome) under normal and pathological conditions, which would provide novel drug targets and novel biomarkers for treatment of AD and other tauopathies.
Collapse
Affiliation(s)
- Branislav Kovacech
- Institute of Neuroimmunology, AD Centre, Slovak Academy of Sciences, 84510 Bratislava, Slovak Republic
| | | | | |
Collapse
|
15
|
Morrison PJ. Paediatric and adult movement disorders (update 2). Eur J Paediatr Neurol 2008; 12:253-6. [PMID: 17855134 DOI: 10.1016/j.ejpn.2007.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 11/16/2022]
|
16
|
Richardson A, Neary D. Clinical aspects of hereditary frontotemporal dementia. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:365-376. [PMID: 18631760 DOI: 10.1016/s0072-9752(07)01234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Anna Richardson
- Clinical Neuroscience Group, Cerebral Function Unit, Greater Manchester Neuroscience Centre, Hope Hospital, Salford, UK
| | | |
Collapse
|
17
|
Chen X, Li Y, Huang J, Cao D, Yang G, Liu W, Lu H, Guo A. Study of tauopathies by comparing Drosophila and human tau in Drosophila. Cell Tissue Res 2007; 329:169-78. [PMID: 17406902 DOI: 10.1007/s00441-007-0401-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 02/19/2007] [Indexed: 01/25/2023]
Abstract
The microtubule-binding protein tau has been investigated for its contribution to various neurodegenerative disorders. However, the findings from transgenic studies, using the same tau transgene, vary widely among different laboratories. Here, we have investigated the potential mechanisms underlying tauopathies by comparing Drosophila (d-tau) and human (h-tau) tau in a Drosophila model. Overexpression of a single copy of either tau isoform in the retina results in a similar rough eye phenotype. However, co-expression of Par-1 with d-tau leads to lethality, whereas co-expression of Par-1 with h-tau has little effect on the rough eye phenotype. We have found analogous results by comparing larval proteomes. Through genetic screening and proteomic analysis, we have identified some important potential modifiers and tau-associated proteins. These results suggest that the two tau genes differ significantly. This comparison between species-specific isoforms may help to clarify whether the homologous tau genes are conserved.
Collapse
Affiliation(s)
- Xinping Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Orth M, Trimble MR. Friedrich Nietzsche's mental illness--general paralysis of the insane vs. frontotemporal dementia. Acta Psychiatr Scand 2006; 114:439-44; discussion 445. [PMID: 17087793 DOI: 10.1111/j.1600-0447.2006.00827.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE For a long time it was thought that Nietzsche suffered from general paralysis of the insane (GPI). However, this diagnosis has been questioned recently, and alternative diagnoses have been proposed. METHOD We have charted Friedrich Nietzsche's final fatal illness, and viewed the differential diagnosis in the light of recent neurological understandings of dementia syndromes. RESULTS It is unclear that Nietzsche ever had syphilis. He lacked progressive motor and other neurological features of a progressive syphilitic central nervous system (CNS) infection and lived at least 12 years following the onset of his CNS signs, which would be extremely rare for patients with untreated GPI. Finally, his flourish of productivity in 1888 would be quite uncharacteristic of GPI, but in keeping with reports of burgeoning creativity at some point in the progression of frontotemporal dementia (FTD). CONCLUSION We suggest that Nietzsche did not have GPI, but died from a chronic dementia, namely FTD.
Collapse
Affiliation(s)
- M Orth
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London, UK.
| | | |
Collapse
|
19
|
Affiliation(s)
- J Lowe
- Dept Clinical Laboratory Sciences, University of Nottingham Medical School, UK.
| | | |
Collapse
|
20
|
Abstract
Senile dementia with tangles is a sporadic subset of very late onset dementia with preponderance in females over age 80 years. Neuropathology shows diffuse cerebral atrophy with neurofibrillary tangles, often ghost tangles, and neuropil threads almost limited to limbic areas (transentorhinal, entorhinal area, hippocampuS--not exclusively sector CA 1--and amygdala) with only rare and mild involvement of the neocortex, basal ganglia and brainstem (except nucleus basalis and locus ceruleus), absence of neuritic plaques and absence or scarcety of amyloid deposits. This pattern of fibrillary pathology corresponds to Braak stages III and IV or the "limbic" type of Alzheimer disease that is considered the main form in the oldest-old but escapes the current criteria for the morphologic diagnosis of Alzheimer disease. It is distinct from other tau- or tangle-pathology related conditions, e.g. progressive supranuclear palsy, autosomal dominant dementia with tangles, and diffuse tangles with calcification. Very low prevalence of ApoE e4 allele (0.03-0.11%) and higher frequency of ApoE e3 and/or e2 suggest a lack of promoting effect of e4 and a possible protecting effect of e2/3 on amyloidogenesis. Senile dementia with tangles is suggested to be a variant of Alzheimer disease occurring in the oldest-old, but its nosological position within aging disorders of the brain is still controversy.
Collapse
Affiliation(s)
- K A Jellinger
- Ludwig Boltzmann Institute of Clinical Neurobiology, Vienna, Austria.
| | | |
Collapse
|
21
|
Frontotemporal dementia with parkinsonism linked to Chromosome 17. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
Stoothoff WH, Johnson GVW. Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta Mol Basis Dis 2005; 1739:280-97. [PMID: 15615646 DOI: 10.1016/j.bbadis.2004.06.017] [Citation(s) in RCA: 315] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/02/2004] [Indexed: 11/24/2022]
Abstract
The microtubule-associated protein tau, abundant in neurons, has gained notoriety due to the fact that it is deposited in cells as fibrillar lesions in numerous neurodegenerative diseases, and most notably Alzheimer's disease. Regulation of microtubule dynamics is the most well-recognized function of tau, but it is becoming increasingly evident that tau plays additional roles in the cell. The functions of tau are regulated by site-specific phosphorylation events, which if dysregulated, as they are in the disease state, result in tau dysfunction and mislocalization, which is potentially followed by tau polymerization, neuronal dysfunction and death. Given the increasing evidence that a disruption in the normal phosphorylation state of tau plays a key role in the pathogenic events that occur in Alzheimer's disease and other neurodegenerative conditions, it is of crucial importance that the protein kinases and phosphatases that regulate tau phosphorylation in vivo as well as the signaling cascades that regulate them be identified. This review focuses on recent literature pertaining to the regulation of tau phosphorylation and function in cell culture and animal model systems, and the role that a dysregulation of tau phosphorylation may play in the neuronal dysfunction and death that occur in neurodegenerative diseases that have tau pathology.
Collapse
Affiliation(s)
- William H Stoothoff
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, 1061 Sparks Center, 1720 7th Avenue South, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
23
|
Götz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L, Kurosinski P, Chen F. Transgenic animal models of Alzheimer's disease and related disorders: histopathology, behavior and therapy. Mol Psychiatry 2004; 9:664-83. [PMID: 15052274 DOI: 10.1038/sj.mp.4001508] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that affects more than 15 million people worldwide. Within the next generation, these numbers will more than double. To assist in the elucidation of pathogenic mechanisms of AD and related disorders, such as frontotemporal dementia (FTDP-17), genetically modified mice, flies, fish and worms were developed, which reproduce aspects of the human histopathology, such as beta-amyloid-containing plaques and tau-containing neurofibrillary tangles (NFT). In mice, the tau pathology caused selective behavioral impairment, depending on the distribution of the tau aggregates in the brain. Beta-amyloid induced an increase in the numbers of NFT, whereas the opposite was not observed in mice. In beta-amyloid-producing transgenic mice, memory impairment was associated with increased levels of beta-amyloid. Active and passive beta-amyloid-directed immunization caused the removal of beta-amyloid plaques and restored memory functions. These findings have since been translated to human therapy. This review aims to discuss the suitability and limitations of the various animal models and their contribution to an understanding of the pathophysiology of AD and related disorders.
Collapse
Affiliation(s)
- J Götz
- Division of Psychiatry Research, University of Zürich, August Forel Str. 1, CH-8008 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Australian research in psychiatric genetics covers molecular genetic studies of depression, anxiety, alcohol dependence, Alzheimer's disease, bipolar disorder, schizophrenia, autism, and attention deficit hyperactivity disorder. For each disorder, a variety of clinical cohorts have been recruited including affected sib pair families, trios, case/controls, and twins from a large population-based twin registry. These studies are taking place both independently and in collaboration with international groups. Microarray studies now complement DNA investigations, while animal models are in development. An Australian government genome facility provides a high throughput genotyping and mutation detection service to the Australian scientific community, enhancing the contribution of Australian psychiatric genetics groups to gene discovery.
Collapse
Affiliation(s)
- Bryan J Mowry
- Department of Psychiatry, Queensland Centre for Schizophrenia Research, University of Queensland, The Park, Centre for Mental Health, Wacol, Queensland 4076, Australia. ,edu.au
| |
Collapse
|
25
|
Jiang Z, Tang H, Havlioglu N, Zhang X, Stamm S, Yan R, Wu JY. Mutations in tau gene exon 10 associated with FTDP-17 alter the activity of an exonic splicing enhancer to interact with Tra2 beta. J Biol Chem 2003; 278:18997-9007. [PMID: 12649279 PMCID: PMC2140226 DOI: 10.1074/jbc.m301800200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mutations in the human tau gene leading to aberrant splicing have been identified in FTDP-17, an autosomal dominant hereditary neurodegenerative disorder. Molecular mechanisms by which such mutations cause tau aberrant splicing were not understood. We characterized two mutations in exon 10 of the tau gene, N279K and Del280K. Our results revealed an exonic splicing enhancer element located in exon 10. The activity of this AG-rich splicing enhancer was altered by N279K and Del280K mutations. This exonic enhancer element interacts with human Tra2 beta protein. The interaction between Tra2 beta and the exonic splicing enhancer correlates with the activity of this enhancer element in stimulating splicing. Biochemical studies including in vitro splicing and RNA interference experiments in transfected cells support a role for Tra2 beta protein in regulating alternative splicing of human tau gene. Our results implicate the human tau gene as a target gene for the alternative splicing regulator Tra2 beta, suggesting that Tra2 beta may play a role in aberrant tau exon 10 alternative splicing and in the pathogenesis of tauopathies.
Collapse
Affiliation(s)
- Zhihong Jiang
- Departments of Pediatrics and of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Hao Tang
- Departments of Pediatrics and of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Necat Havlioglu
- Departments of Pediatrics and of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Xiaochun Zhang
- Departments of Pediatrics and of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stefan Stamm
- Universitate Erlangen-Nurenberg, Institute of Biochemistry, Fahrstrasse 17, Erlangen 91054, Germany
| | - Riqiang Yan
- Department of Cell and Molecular Biology, Pharmacia Corp., Kalamazoo, Michigan 49007
| | - Jane Y. Wu
- Departments of Pediatrics and of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
- To whom correspondence should be addressed. Tel.: 314−286−2798; Fax: 314−286−2892; E-mail:
| |
Collapse
|
26
|
Savioz A, Riederer BM, Heutink P, Rizzu P, Tolnay M, Kövari E, Probst A, Riederer IRM, Bouras C, Leuba G. Tau and neurofilaments in a family with frontotemporal dementia unlinked to chromosome 17q21-22. Neurobiol Dis 2003; 12:46-55. [PMID: 12609488 DOI: 10.1016/s0969-9961(02)00011-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A Swiss frontotemporal dementia (FTD) kindred with extrapyramidal-like features and without motor neuron disease shows a brain pathology with ubiquitin-positive but tau-negative inclusions. Tau and neurofilament modifications are now studied here in three recently deceased family members. No major and specific decrease of tau was observed as described by others in, e.g., sporadic cases of FTD with absence of tau-positive inclusions. However, a slight decrease of tau, neurofilament, and synaptic proteins, resulting from frontal atrophy was detected. In parallel, polymorphic markers on chromosome 17q21-22, the centromeric region of chromosome 3 and chromosome 9, were tested. Haplotype analysis showed several recombination events for chromosomes 3 and 17, but patients shared a haplotype on chromosome 9q21-22. However as one of the patients exhibited Alzheimer and vascular dementia pathology with uncertain concomitant FTD, this locus is questionable. Altogether, these data indicate principally that the Swiss kindred is unlinked to locus 17q21-22, and that tau is not at the origin of FTD in this family.
Collapse
Affiliation(s)
- Armand Savioz
- Department of Psychiatry, University of Geneva School of Medicine, 1225 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Patrick J Morrison
- Department of Medical Genetics, Belfast City Hospital Trust, Belfast BT9 7AB, Northern Ireland, UK.
| |
Collapse
|
28
|
Abstract
Alzheimer's disease is the most frequent form of dementia and it is estimated that its prevalence will quadruple by the year 2050. In the past decade, a number of important new developments have provided insight in the pathogenesis, improved diagnosis and allowed therapy of dementia. Several new mutations in the amyloid protein precursor gene, presenilin-1 and -2 genes and the influence of the apolipoprotein E gene isotypes on the disease phenotype have been described. The role of secretases in the generation of amyloid in senile plaques has been determined and this may provide important new therapeutic approaches in the future. The role of vascular lesions in the development of dementia and relationship with the Lewy body variant of Alzheimer's disease have been refined. Acetylcholine is deficient in Alzheimer's disease and can be supplemented in part by treatment with acetylcholinesterase inhibitors. Recently, surprising results of vaccination with amyloid in a transgenic mouse model have opened a completely new perspective in the prevention and treatment of Alzheimer's disease.
Collapse
|
29
|
Abstract
Approximately 20% to 40% of dementia is caused by diseases other than Alzheimer's disease. This article reviews the major categories of non-Alzheimer dementia, including dementia associated with cerebrovascular disease, dementia associated with extrapyramidal features, and the frontotemporal dementias. Dementia associated with cerebrovascular disease is a heterogeneous condition the importance of which is often misunderstood. Dementia with Lewy bodies, the most common of the dementias associated with extrapyramidal disease, is becoming better recognized for its unique management issues. At least some of the frontotemporal dementias, which in this article encompass the progressive aphasias, have mutations in the tau gene that account for some of the phenotypic variations.
Collapse
Affiliation(s)
- D S Knopman
- Department of Neurology, Mayo Medical School, Rochester, Minnesota, USA
| |
Collapse
|
30
|
Bigio EH, Lipton AM, Yen SH, Hutton ML, Baker M, Nacharaju P, White CL, Davies P, Lin W, Dickson DW. Frontal lobe dementia with novel tauopathy: sporadic multiple system tauopathy with dementia. J Neuropathol Exp Neurol 2001; 60:328-41. [PMID: 11305868 DOI: 10.1093/jnen/60.4.328] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a novel tauopathy in a patient with a 10-yr history of progressive frontal lobe dementia and a negative family history. Autopsy revealed mild atrophy of frontal and parietal lobes and severe atrophy of the temporal lobes. There were occasional filamentous tau-positive inclusions, but more interesting were numerous distinctive globular neuronal and glial tau-positive inclusions in both gray and white matter of the neocortex. Affected subcortical regions included substantia nigra, globus pallidus, subthalamic nucleus, and cerebellar dentate nucleus, in a distribution similar to progressive supranuclear palsy (PSP), but without significant accompanying neuronal loss or gliosis. Predominantly straight filaments were detected by electron microscopy (EM), while other inclusions were similar to fingerprint bodies. No twisted ribbons were detected. Immuno-EM studies revealed that only the filamentous inclusions were composed of tau. Immunoblotting of sarkosyl-insoluble tau revealed 2 major bands of 64 and 68 kDa. Blotting analysis after dephosphorylation revealed predominantly 4-repeat tau. Sequence analysis of tau revealed that there were no mutations in either exons 9-13 or the adjacent intronic sequences. The unique cortical tau pathology in this case of sporadic multiple system tauopathy with dementia adds a new pathologic profile to the spectrum of tauopathies.
Collapse
Affiliation(s)
- E H Bigio
- Department of Pathology, University of Texas Southwestern Medical School, Dallas 75390-9073, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Tau is not only a basic component of neurofibrillary degeneration, but is also an aetiological factor, as demonstrated by mutations on the tau gene responsible for frontotemporal dementias with parkinsonism linked to chromosome 17. Polymorphisms on the tau gene and the hierarchical invasion of neocortical areas by tau pathology in numerous sporadic neurodegenerative diseases also suggest that tau pathology is a primary pathogenic event in non-familial dementing diseases and a lead for solid diagnostic and therapeutic approaches.
Collapse
|
32
|
Goedert M, Spillantini MG. Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:110-21. [PMID: 10899436 DOI: 10.1016/s0925-4439(00)00037-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease is characterised by the degeneration of selected populations of nerve cells that develop filamentous inclusions prior to degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Abundant filamentous tau inclusions are not limited to Alzheimer's disease. They are the defining neuropathological characteristic of frontotemporal dementias, such as Pick's disease, and of progressive supranuclear palsy and corticobasal degeneration. The discovery of mutations in the tau gene in familial frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has provided a direct link between tau dysfunction and dementing disease. Known mutations produce either a reduced ability of tau to interact with microtubules, or an overproduction of tau isoforms with four microtubule-binding repeats. This leads in turn to the assembly of tau into filaments similar or identical to those found in Alzheimer's disease brain. Several missense mutations also have a stimulatory effect on heparin-induced tau filament formation. Assembly of tau into filaments may be the gain of toxic function that is believed to underlie the demise of affected brain cells.
Collapse
Affiliation(s)
- M Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | | |
Collapse
|
33
|
Pickering-Brown SM, Owen F, Isaacs A, Snowden J, Varma A, Neary D, Furlong R, Daniel SE, Cairns NJ, Mann DM. Apolipoprotein E epsilon4 allele has no effect on age at onset or duration of disease in cases of frontotemporal dementia with pick- or microvacuolar-type histology. Exp Neurol 2000; 163:452-6. [PMID: 10833320 DOI: 10.1006/exnr.2000.7387] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Frontotemporal dementia (FTD) is the second most common cause of presenile dementia. Here we have investigated the frequency of the epsilon4 allele of the Apolipoprotein (APOE) gene in FTD and in other non-Alzheimer forms of dementia related to FTD such as Motor Neurone disease dementia, semantic dementia, progressive aphasia, progressive supranuclear palsy, and corticobasal degeneration. In none of these diagnostic groups did we find a significant increase in the APOE epsilon4 allelic frequency, compared to population values. Neither did we observe any affects of the epsilon4 allele upon age at onset or duration of disease. We conclude therefore that polymorphic variations in the APOE gene do not modulate either the occurrence or progression of these non-Alzheimer forms of dementia.
Collapse
Affiliation(s)
- S M Pickering-Brown
- Division of Neuroscience, School of Biological Sciences, University of Manchester, Great Britain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Stanford PM, Halliday GM, Brooks WS, Kwok JB, Storey CE, Creasey H, Morris JG, Fulham MJ, Schofield PR. Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene: expansion of the disease phenotype caused by tau gene mutations. Brain 2000; 123 ( Pt 5):880-93. [PMID: 10775534 DOI: 10.1093/brain/123.5.880] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic mutations in the tau gene on chromosome 17 are known to cause frontotemporal dementias. We have identified a novel silent mutation (S305S) in the tau gene in a subject without significant atrophy or cellular degeneration of the frontal and temporal cortices. Rather the cellular pathology was characteristic of progressive supranuclear palsy, with neurofibrillary tangles concentrating within the subcortical regions of the basal ganglia. Two affected family members presented with symptoms of dementia and later developed neurological deficits including abnormality of vertical gaze and extrapyramidal signs. The third presented with dystonia of the left arm and dysarthria, and later developed a supranuclear gaze palsy and falls. The mutation is located in exon 10 of the tau gene and forms part of a stem-loop structure at the 5' splice donor site. Although the mutation does not give rise to an amino acid change in the tau protein, functional exon-trapping experiments show that it results in a significant 4.8-fold increase in the splicing of exon 10, resulting in the presence of tau containing four microtubule-binding repeats. This study provides direct molecular evidence for a functional mutation that causes progressive supranuclear palsy pathology and demonstrates that mutations in the tau gene are pleiotropic.
Collapse
Affiliation(s)
- P M Stanford
- Garvan Institute of Medical Research, Sydney, Prince of Wales Medical Research Institute, Randwick, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Savioz A, Kövari E, Anastasiu R, Rossier C, Saini K, Bouras C, Leuba G. Search for a mutation in the tau gene in a Swiss family with frontotemporal dementia. Exp Neurol 2000; 161:330-5. [PMID: 10683298 DOI: 10.1006/exnr.1999.7263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Frontotemporal dementia (FTD) is considered to have a heterogeneous aetiology. To date the tau gene located on chromosome 17 has been shown to be implicated in the pathogenesis of several FTD families with parkinsonism, the so called FTDP-17 families. The mutations reported so far are located within exons 9 to 13, a region coding for the microtubule-binding sites. They are causing various cytoskeletal disturbances. We are describing here the main clinical and neuropathological features of a Swiss FTD family with members presenting a FTDP-like clinical phenotype. However, if we except two silent polymorphic sites at position 227 and 255 in exon 9, neither a known FTDP-17 mutation nor a novel one was detected in this region of the tau gene. Thus, the existence of a yet unknown mechanism of neurodegeneration, other than via mutations near or within the microtubule-binding sites, or the exon 10 splice sites of the tau gene, has to be considered to explain dementia in this family. A mutation in another gene is still possible.
Collapse
Affiliation(s)
- A Savioz
- Division of Neuropsychiatry, Department of Psychiatry, University of Geneva School of Medecine, Chêne-Bourg, Geneva, CH-1225, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Iijima M, Tabira T. Frontotemporal dementia with tauopathy: A review and preliminary immunohistochemical study of tau kinases and phosphatases. Neuropathology 1999. [DOI: 10.1046/j.1440-1789.1999.00261.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
|
38
|
Sperfeld AD, Collatz MB, Baier H, Palmbach M, Storch A, Schwarz J, Tatsch K, Reske S, Joosse M, Heutink P, Ludolph AC. FTDP-17: an early-onset phenotype with parkinsonism and epileptic seizures caused by a novel mutation. Ann Neurol 1999; 46:708-15. [PMID: 10553987 DOI: 10.1002/1531-8249(199911)46:5<708::aid-ana5>3.0.co;2-k] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, mutations in the tau gene on chromosome 17 were found causative for autosomal dominantly inherited frontotemporal dementia and parkinsonism (FTDP-17). We describe a family carrying a missense mutation at nucleotide 1137 C --> T, resulting in the amino acid substitution P301S. Methods of investigations include clinical, electrophysiological, and imaging techniques. This kindred presents with a novel phenotype characterized by an early onset of rapidly progressive frontotemporal dementia and parkinsonism in combination with epileptic seizures. We define the dopaminergic deficits as being predominantly presynaptic by the use of single-photon emission computed tomography with a dopamine transporter ligand. The association of this early-onset phenotype with P301S mutation is not entirely consistent with current criteria for the diagnosis of frontotemporal dementias and may encourage the search for tau mutations in diseases similar but not identical to FTDP-17. Also, the change from proline to serine suggests that this mutation might contribute to tau hyperphosphorylation.
Collapse
Affiliation(s)
- A D Sperfeld
- Department of Neurology, University of Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
van Swieten JC, Stevens M, Rosso SM, Rizzu P, Joosse M, de Koning I, Kamphorst W, Ravid R, Spillantini MG, Heutink P. Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Ann Neurol 1999; 46:617-26. [PMID: 10514099 DOI: 10.1002/1531-8249(199910)46:4<617::aid-ana10>3.0.co;2-i] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several mutations in the tau gene have been found in families with hereditary frontotemporal dementia and parkinsonism linked to chromosome 17q21-22 (FTDP-17). This study is the first attempt to correlate genotype and phenotype in six families with FTDP-17 with mutations in the tau gene (deltaK280, G272V, P301L, and R406W). We have investigated tau pathology in 1 P301L and 1 R406W patient. The R406W family showed a significantly higher age at onset (59.2 +/- 5.5 years) and longer duration of illness (12.7 +/- 1.5 years) than the families with the other mutations. The six families showed considerable variation in clinical presentation, but none of them had early parkinsonism. Mutism developed significantly later in the R406W family than in the other families. Frontotemporal atrophy on neuroimaging in the R406W family was less severe than in the P301L and deltaK280 families. The P301L brain contained many pretangles in the frontal and temporal cortex, and the dentate gyrus of hippocampus, showing three tau bands (64, 68, and 72 kd) of extracted tau from the frontal cortex. The presence of many neurofibrillary tangles, many diffuse and classic neuritic plaques in the temporal and parietal cortex, and the hippocampus of the same P301L brain correlated with the presence of four sarkosyl-insoluble (60, 64, 68, and 72 kd) tau bands. The coexistence of characteristic P301L and Alzheimer pathology in the same brain needs further explanation. The R406W brain showed abundant neurofibrillary tangles in several brain regions, and four tau bands (60, 64, 68, and 72 kd) of extracted tau from these regions. The slower progression of the disease in the R406W family might be explained by the microtubule-binding properties of the mutant protein.
Collapse
Affiliation(s)
- J C van Swieten
- Department of Neurology, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Houlden H, Baker M, Adamson J, Grover A, Waring S, Dickson D, Lynch T, Boeve B, Petersen RC, Pickering-Brown S, Owen F, Neary D, Craufurd D, Snowden J, Mann D, Hutton M. Frequency of tau mutations in three series of non-Alzheimer's degenerative dementia. Ann Neurol 1999; 46:243-8. [PMID: 10443890 DOI: 10.1002/1531-8249(199908)46:2<243::aid-ana14>3.0.co;2-l] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Splice-site and missense mutations have been identified in tau associated with frontotemporal dementia with parkinsonism linked to chromosome 17. In this study we assessed the genetic contribution of tau mutations to three patient series with non-Alzheimer's (non-AD) degenerative dementia. The groups included (1) a community-based dementia series from Minnesota, MN; (2) a referral series with clinicopathological tauopathy; and (3) a pathologically confirmed familial frontotemporal dementia series from Manchester, UK. Comparing the three clinical series: in the stringently diagnosed Manchester frontotemporal dementia series, tau mutations were present in 13.6% of cases (three splice-site mutations); in the clinicopathological referral series that used more general inclusion criteria, 3 cases with P301L mutations were observed, which represents a lower mutation frequency of 3.6% (9.4% in familial cases); in contrast, tau mutations were not detected in the Minnesota community-based dementia series, suggesting the occurrence of these mutations in dementia generally is rare (<0.2%). These data identify the prevalence of mutations in three different clinical settings and indicate that this figure is sensitive to the diagnostic criteria used in each patient series.
Collapse
Affiliation(s)
- H Houlden
- Mayo Clinic Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yasojima K, McGeer EG, McGeer PL. Tangled areas of Alzheimer brain have upregulated levels of exon 10 containing tau mRNA. Brain Res 1999; 831:301-5. [PMID: 10412011 DOI: 10.1016/s0006-8993(99)01486-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We measured the relative levels of exon 10 containing and exon 10 deleted tau mRNAs in multiple areas of Alzheimer disease (AD) and normal brain. Compared with normal brain, we found a 3.4-fold upregulation of exon 10 plus and a 1.9-fold downregulation of exon 10 minus mRNAs in areas of AD brain with a heavy burden of neurofibrillary tangles. These data suggest that tangle formation in AD is initially determined by transcriptional factors and is not exclusively caused by post-translational events.
Collapse
Affiliation(s)
- K Yasojima
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, B.C., Canada
| | | | | |
Collapse
|
42
|
Nasreddine ZS, Loginov M, Clark LN, Lamarche J, Miller BL, Lamontagne A, Zhukareva V, Lee VM, Wilhelmsen KC, Geschwind DH. From genotype to phenotype: a clinical pathological, and biochemical investigation of frontotemporal dementia and parkinsonism (FTDP-17) caused by the P301L tau mutation. Ann Neurol 1999; 45:704-15. [PMID: 10360762 DOI: 10.1002/1531-8249(199906)45:6<704::aid-ana4>3.0.co;2-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Frontotemporal dementia is a heterogeneous, often inherited disorder that typically presents with the insidious onset of behavioral and personality changes. Two genetic loci have been identified and mutations in tau have been causally implicated in a subset of families linked to one of these loci on chromosome 17q21-22. In this study, linkage analysis was performed in a large pedigree, the MN family, suggesting chromosome 17q21-22 linkage. Mutational analysis of the tau coding region identified a C-to-T change in exon 10 that resulted in the conversion of proline to a leucine (P301L) that segregated with frontotemporal dementia in this family. The clinical and pathological findings in the MN family emphasize the significant overlap between Pick's disease, corticobasal degeneration, and frontotemporal dementia and challenge some of the current dogma surrounding this condition. Pathological studies of two brains from affected members of Family MN obtained at autopsy demonstrate numerous tau-positive inclusions that were most prominent in the frontal lobes, anterior temporal lobes, and brainstem structures, as well as Pick-like bodies and associated granulovacuolar degeneration. These Pick-like bodies were observed in 1 patient with motor neuron disease. Because exon 10 is present only in tau mRNA coding for a protein with four microtubule binding repeats (4R), this mutation should selectively affect 4Rtau isoforms. Indeed, immunoblotting demonstrated that insoluble 4Rtau is selectively aggregated in both gray and white matter of affected individuals. Although there was significant pathological similarity between the 2 cases, the pattern of degenerative changes and tau-positive inclusions was not identical, suggesting that other genetic or epigenetic factors can significantly modify the regional topology of neurodegeneration in this condition.
Collapse
Affiliation(s)
- Z S Nasreddine
- Université de Sherbrooke, Service de Neurologie, Hopital Charles LeMoyne, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rizzu P, Van Swieten JC, Joosse M, Hasegawa M, Stevens M, Tibben A, Niermeijer MF, Hillebrand M, Ravid R, Oostra BA, Goedert M, van Duijn CM, Heutink P. High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am J Hum Genet 1999; 64:414-21. [PMID: 9973279 PMCID: PMC1377751 DOI: 10.1086/302256] [Citation(s) in RCA: 287] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutations in microtubule-associated protein tau recently have been identified in familial cases of frontotemporal dementia (FTD). We report the frequency of tau mutations in a large population-based study of FTD carried out in the Netherlands from January 1994 to June 1998. Thirty-seven patients had >/=1 first-degree relative with dementia. A mutation in the tau gene was found in 17.8% of the group of patients with FTD and in 43% of patients with FTD who also had a positive family history of FTD. Three distinct missense mutations (G272V, P301L, R406W) accounted for 15.6% of the mutations. These three missense mutations, and a single amino acid deletion (DeltaK280) that was detected in one patient, strongly reduce the ability of tau to promote microtubule assembly. We also found an intronic mutation at position +33 after exon 9, which is likely to affect the alternative splicing of tau. Tau mutations are responsible for a large proportion of familial FTD cases; however, there are also families with FTD in which no mutations in tau have been found, which indicates locus and/or allelic heterogeneity. The different tau mutations may result in disturbances in the interactions of the protein tau with microtubules, resulting in hyperphosphorylation of tau protein, assembly into filaments, and subsequent cell death.
Collapse
Affiliation(s)
- P Rizzu
- Department of Clinical Genetics, Erasmus University, 3000 DR Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Frontotemporal dementia (FTD) is the most common syndrome in which the focus of neurodegeneration is the frontal lobes. FTD is frequently familial. It is also often due to a susceptibility locus on chromosome 17q21-22. Some 17q21-22-linked families have mutations in the tau gene and most have microscopically visible aggregates of hyperphosphorylated tau. Demonstrating that mutations in tau can produce neurodegeneration will necessitate a reassessment of the role of tau in the pathogenesis of the many diseases in which tau biology is disrupted.
Collapse
Affiliation(s)
- K C Wilhelmsen
- Gallo Clinic & Research Center, University of California, San Francisco 94110, USA
| |
Collapse
|
45
|
Clark LN, Poorkaj P, Wszolek Z, Geschwind DH, Nasreddine ZS, Miller B, Li D, Payami H, Awert F, Markopoulou K, Andreadis A, D'Souza I, Lee VM, Reed L, Trojanowski JQ, Zhukareva V, Bird T, Schellenberg G, Wilhelmsen KC. Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci U S A 1998; 95:13103-7. [PMID: 9789048 PMCID: PMC23724 DOI: 10.1073/pnas.95.22.13103] [Citation(s) in RCA: 341] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pallido-ponto-nigral degeneration (PPND) is one of the most well characterized familial neurodegenerative disorders linked to chromosome 17q21-22. These hereditary disorders are known collectively as frontotemporal dementia (FTD) and parkinsonism linked to chromosome 17 (FTDP-17). Although the clinical features and associated regional variations in the neuronal loss observed in different FTDP-17 kindreds are diverse, the diagnostic lesions of FTDP-17 brains are tau-rich filaments in the cytoplasm of specific subpopulations of neurons and glial cells. The microtubule associated protein (tau) gene is located on chromosome 17q21-22. For these reasons, we investigated the possibility that PPND and other FTDP-17 syndromes might be caused by mutations in the tau gene. Two missense mutations in exon 10 of the tau gene that segregate with disease, Asn279(Lys) in the PPND kindred and Pro301(Leu) in four other FTDP-17 kindreds, were found. A third mutation was found in the intron adjacent to the 3' splice site of exon 10 in patients from another FTDP-17 family. Transcripts that contain exon 10 encode tau isoforms with four microtubule (MT)-binding repeats (4Rtau) as opposed to tau isoforms with three MT-binding repeats (3Rtau). The insoluble tau aggregates isolated from brains of patients with each mutation were analyzed by immunoblotting using tau-specific antibodies. For each of three mutations, abnormal tau with an apparent Mr of 64 and 69 was observed. The dephosphorylated material comigrated with tau isoforms containing exon 10 having four MT-binding repeats but not with 3Rtau. Thus, the brains of patients with both the missense mutations and the splice junction mutation contain aggregates of insoluble 4Rtau in filamentous inclusions, which may lead to neurodegeneration.
Collapse
Affiliation(s)
- L N Clark
- Department of Neurology and Gallo Clinic and Research Center, University of California, San Francisco, CA 94110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dumanchin C, Camuzat A, Campion D, Verpillat P, Hannequin D, Dubois B, Saugier-Veber P, Martin C, Penet C, Charbonnier F, Agid Y, Frebourg T, Brice A. Segregation of a missense mutation in the microtubule-associated protein tau gene with familial frontotemporal dementia and parkinsonism. Hum Mol Genet 1998; 7:1825-9. [PMID: 9736786 DOI: 10.1093/hmg/7.11.1825] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Frontotemporal dementia and parkinsonism (FTDP) is the second most common cause of neurodegenerative dementia after Alzheimer's disease. Recently, several kindreds with an autosomal dominant form of FTDP have been reported and in some families the pathological locus was mapped to a 2 cM interval on 17q21-22. The MAPT gene, located on 17q21 and coding for the human microtubule-associated protein tau, is a strong candidate gene, since tau-positive neuronal inclusions have been observed in brains from some FTDP patients. Direct sequencing of the MAPT exonic sequences in 21 French FTDP families revealed in six index cases the same missense mutation in exon 10 resulting in a Pro-->Leu change at amino acid 301. Co-segregation of this mutation with the disease was demonstrated by restriction fragment analysis in two families for which several affected relatives were available. The Pro301Leu mutation was not observed in either 50 unrelated French controls or in 11 patients with sporadic frontotemporal dementia. This mutation, which occurs in the second microtubule-binding domain of the MAPT protein, is likely to have a drastic functional consequence. The observation of this mutation in several FTDP families might suggest that disruption of binding of MAPT protein to the microtubule is a key event in the pathogenesis of FTDP.
Collapse
Affiliation(s)
- C Dumanchin
- Génétique et Hématologie Moléculaires (JE 2006), Centre Hospitalo-Universitaire de Rouen, 76031 Rouen, France and IFRMP, 76821 Mont-Saint-Aignon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
This review of the differential diagnosis of amyotrophic lateral sclerosis focuses on two themes. The first is practical, how to establish the diagnosis based primarily on clinical findings buttressed by electrodiagnosis. The main considerations are multifocal motor neuropathy and cervical spondylotic myelopathy. The second theme is the relationship of motor neuron disease to other conditions, including benign fasciculation (Denny-Brown, Foley syndrome), paraneoplastic syndromes, lymphoproliferative disease, radiation damage, monomelic amyotrophy (Hirayama syndrome), as well as an association with parkinsonism, dementia and multisystem disorders of the central nervous system.
Collapse
Affiliation(s)
- L P Rowland
- Eleanor and Lou Gehrig MDA/ALS Center, Neurological Institute, Columbia-Presbyterian Medical Center, New York, NY 10032, USA.
| |
Collapse
|
48
|
Abstract
Recent progress in diagnostic criteria of non-Alzheimer degenerative dementias is reviewed. These dementias comprise frontotemporal dementias (including hereditary dementias), primary progressive aphasia and anarthria, corticobasal degeneration, progressive supranuclear palsy and dementia with Lewy bodies. The approach of studying these diseases has changed considerably with genetic and biochemical analyses. A molecular classification is suggested and the clinical significance of this classification is discussed.
Collapse
Affiliation(s)
- F Pasquier
- Department of Neurology, Centre Hospitalier et Universitaire, Lille, France.
| | | |
Collapse
|
49
|
Isaacs A, Baker M, Wavrant-De Vrièze F, Hutton M. Determination of the gene structure of human GFAP and absence of coding region mutations associated with frontotemporal dementia with parkinsonism linked to chromosome 17. Genomics 1998; 51:152-4. [PMID: 9693047 DOI: 10.1006/geno.1998.5360] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A Isaacs
- Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA
| | | | | | | |
Collapse
|
50
|
Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998; 393:702-5. [PMID: 9641683 DOI: 10.1038/31508] [Citation(s) in RCA: 2468] [Impact Index Per Article: 94.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thirteen families have been described with an autosomal dominantly inherited dementia named frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), historically termed Pick's disease. Most FTDP-17 cases show neuronal and/or glial inclusions that stain positively with antibodies raised against the microtubule-associated protein Tau, although the Tau pathology varies considerably in both its quantity (or severity) and characteristics. Previous studies have mapped the FTDP-17 locus to a 2-centimorgan region on chromosome 17q21.11; the tau gene also lies within this region. We have now sequenced tau in FTDP-17 families and identified three missense mutations (G272V, P301L and R406W) and three mutations in the 5' splice site of exon 10. The splice-site mutations all destabilize a potential stem-loop structure which is probably involved in regulating the alternative splicing of exon10. This causes more frequent usage of the 5' splice site and an increased proportion of tau transcripts that include exon 10. The increase in exon 10+ messenger RNA will increase the proportion of Tau containing four microtubule-binding repeats, which is consistent with the neuropathology described in several families with FTDP-17.
Collapse
Affiliation(s)
- M Hutton
- Mayo Clinic Jacksonville, Florida 32224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|