1
|
Tanei T, Nishimura Y, Nagashima Y, Ishii M, Nishii T, Fukaya N, Abe T, Kato H, Maesawa S, Saito R. Efficacy of Spinal Cord Stimulation Using Differential Target Multiplexed Stimulation for Intractable Pain of Hereditary Neuropathy with Liability to Pressure Palsies: A Case Report. NMC Case Rep J 2023; 10:203-208. [PMID: 37539362 PMCID: PMC10396390 DOI: 10.2176/jns-nmc.2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 08/05/2023] Open
Abstract
Hereditary neuropathy with liability to pressure palsies is an extremely rare genetic disorder; it is an autosomal dominant disorder with a high incidence of neuropathic and/or musculoskeletal pain. A case of achieving pain relief by spinal cord stimulation using differential target multiplexed stimulation for a 44-year-old female patient with hereditary neuropathy with liability to pressure palsies who was experiencing severe pain in her back, face, and all four limbs is presented. In her early teens, the initial symptoms were numbness and weakness of a limb after movement, which improved spontaneously. Transient pain in her back followed by systemic and persistent muscle weakness and pain developed. Deletion of the gene for peripheral myelin protein 22 was detected by peripheral nerve biopsy. The diagnosis of hereditary neuropathy with liability to pressure palsies was made in her early thirties. A spinal cord stimulation trial was performed because her severe pain continued despite administering many medications. Therefore, two spinal cord stimulation systems were implanted at the C3-5 and Th8-9 levels by two procedures. Pain in her back, arms, and legs decreased from 8 to 1, 5 to 1, and 6 to 2 on the numerical rating scale, respectively. Furthermore, opioid usage was tapered. The pain of hereditary neuropathy with liability to pressure palsies has a complicated pathogenesis and is resistant to pharmacological treatment. Spinal cord stimulation using differential target multiplexed stimulation may be a viable treatment option.
Collapse
Affiliation(s)
- Takafumi Tanei
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yusuke Nishimura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshitaka Nagashima
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Motonori Ishii
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoya Nishii
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Nobuhisa Fukaya
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Abe
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroyuki Kato
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Satoshi Maesawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Kim C, Park JS. Clinical characteristics of hereditary neuropathy with liability to pressure palsy presenting with monoparesis in the emergency department. Yeungnam Univ J Med 2020; 37:341-344. [PMID: 32891078 PMCID: PMC7606964 DOI: 10.12701/yujm.2020.00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 11/25/2022] Open
Abstract
Hereditary neuropathy with liability to pressure palsy (HNPP) is a rare neurological genetic disease caused by deletion of the peripheral myelin protein 22 gene and presents in childhood or young adulthood. We report four cases of HNPP with typical and rare presentations, reflecting the broad clinical spectrum of this disease. Two patients presented with mononeuropathies that are frequently observed in HNPP; the remaining two presented with bilateral neuropathy or mononeuropathy anatomically present in the deep layer. This reflects the broad clinical presentation of HNPP, and clinicians should differentiate these conditions in young patients with monoparesis or bilateral paresis. Although HNPP is currently untreatable, early diagnosis in the emergency department can lead to early detection, eventually resulting in less provocation and recurrence which may cause early motor nerve degeneration.
Collapse
Affiliation(s)
- Changho Kim
- Department of Emergency Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jin-Sung Park
- Department of Neurology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
3
|
Characterisation of pain in people with hereditary neuropathy with liability to pressure palsy. J Neurol 2017; 264:2464-2471. [PMID: 29079893 DOI: 10.1007/s00415-017-8648-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Hereditary neuropathy with liability to pressure palsy (HNPP) has historically been considered a pain-free condition, though some people with HNPP also complain of pain. This study characterised persistent pain in people with HNPP. Participants provided cross-sectional demographic data, information on the presence of neurological and persistent pain symptoms, and the degree to which these interfered with daily life. The painDETECT and Central Sensitization Inventory questionnaires were used to indicate potential neuropathic, central sensitisation and musculoskeletal (nociceptive) pain mechanisms. Additionally, participants were asked if they thought that pain was related to/part of HNPP. 32/43 (74%) subjects with HNPP had persistent pain and experience this pain in the last week. Of those with pain, 24 (75%) were likely to have neuropathic pain and 27 (84%) were likely to have central sensitisation. All 32 participants felt that their pain could be related to/part of their HNPP. Significant negative impact of the pain was common. Pain characterisation identified neuropathic pain and/or central sensitisation as common, potential underlying processes. Pain may plausibly be directly related to the underlying pathophysiology of HNPP. Further consideration of including pain as a primary symptom of HNPP is warranted.
Collapse
|
4
|
The LITAF/SIMPLE I92V sequence variant results in an earlier age of onset of CMT1A/HNPP diseases. Neurogenetics 2014; 16:27-32. [PMID: 25342198 PMCID: PMC4284369 DOI: 10.1007/s10048-014-0426-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/30/2014] [Indexed: 11/26/2022]
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) represent the most common heritable neuromuscular disorders. Molecular diagnostics of CMT1A/HNPP diseases confirm clinical diagnosis, but their value is limited to the clinical course and prognosis. However, no biomarkers of CMT1A/HNPP have been identified. We decided to explore if the LITAF/SIMPLE gene shared a functional link to the PMP22 gene, whose duplication or deletion results in CMT1A and HNPP, respectively. By studying a large cohort of CMT1A/HNPP-affected patients, we found that the LITAF I92V sequence variant predisposes patients to an earlier age of onset of both the CMT1A and HNPP diseases. Using cell transfection experiments, we showed that the LITAF I92V sequence variant partially mislocalizes to the mitochondria in contrast to wild-type LITAF which localizes to the late endosome/lysosomes and is associated with a tendency for PMP22 to accumulate in the cells. Overall, this study shows that the I92V LITAF sequence variant would be a good candidate for a biomarker in the case of the CMT1A/HNPP disorders.
Collapse
|
5
|
van Paassen BW, van der Kooi AJ, van Spaendonck-Zwarts KY, Verhamme C, Baas F, de Visser M. PMP22 related neuropathies: Charcot-Marie-Tooth disease type 1A and Hereditary Neuropathy with liability to Pressure Palsies. Orphanet J Rare Dis 2014; 9:38. [PMID: 24646194 PMCID: PMC3994927 DOI: 10.1186/1750-1172-9-38] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/06/2014] [Indexed: 12/18/2022] Open
Abstract
PMP22 related neuropathies comprise (1) PMP22 duplications leading to Charcot-Marie-Tooth disease type 1A (CMT1A), (2) PMP22 deletions, leading to Hereditary Neuropathy with liability to Pressure Palsies (HNPP), and (3) PMP22 point mutations, causing both phenotypes. Overall prevalence of CMT is usually reported as 1:2,500, epidemiological studies show that 20-64% of CMT patients carry the PMP22 duplication. The prevalence of HNPP is not well known. CMT1A usually presents in the first two decades with difficulty walking or running. Distal symmetrical muscle weakness and wasting and sensory loss is present, legs more frequently and more severely affected than arms. HNPP typically leads to episodic, painless, recurrent, focal motor and sensory peripheral neuropathy, preceded by minor compression on the affected nerve. Electrophysiological evaluation is needed to determine whether the polyneuropathy is demyelinating. Sonography of the nerves can be useful. Diagnosis is confirmed by finding respectively a PMP22 duplication, deletion or point mutation. Differential diagnosis includes other inherited neuropathies, and acquired polyneuropathies. The mode of inheritance is autosomal dominant and de novo mutations occur. Offspring of patients have a chance of 50% to inherit the mutation from their affected parent. Prenatal testing is possible; requests for prenatal testing are not common. Treatment is currently symptomatic and may include management by a rehabilitation physician, physiotherapist, occupational therapist and orthopaedic surgeon. Adult CMT1A patients show slow clinical progression of disease, which seems to reflect a process of normal ageing. Life expectancy is normal.
Collapse
Affiliation(s)
- Barbara W van Paassen
- Department of Clinical Genetics, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Shy ME, Scavina MT, Clark A, Krajewski KM, Li J, Kamholz J, Kolodny E, Szigeti K, Fischer RA, Saifi GM, Scherer SS, Lupski JR. T118M PMP22 mutation causes partial loss of function and HNPP-like neuropathy. Ann Neurol 2006; 59:358-64. [PMID: 16437560 DOI: 10.1002/ana.20777] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To determine the clinical consequences of the PMP22 point mutation, T118M, which has been previously considered to either cause an autosomal recessive form of Charcot-Marie-Tooth (CMT) disease or be a benign polymorphism. METHODS We analyzed patients from five separate kindreds and characterized their peripheral nerve function by clinical and electrophysiological methods. RESULTS All heterozygous patients had clinical and/or electrophysiological features of a neuropathy similar to hereditary neuropathy with liability to pressure palsies (HNPPs). The homozygous patient had a severe axonal neuropathy without features of demyelination. INTERPRETATION These findings suggest that T118M PMP22 retains some normal PMP22 activity, allowing the formation of compact myelin and normal nerve conduction velocities in the homozygous state. Taken together, these findings suggest that T118M is a pathogenic mutation causing a dominantly inherited form of CMT by a partial loss of PMP22 function.
Collapse
Affiliation(s)
- Michael E Shy
- Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
LEWIS RICHARDA, SUMNER AUSTINJ. Electrophysiologic Features of Inherited Demyelinating Neuropathies: A Reappraisal. Ann N Y Acad Sci 2006; 883:321-335. [DOI: 10.1111/j.1749-6632.1999.tb08594.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
ANANI THIERRY, SINDOU PHILIPPE, RICHARD LAURENCE, DIOT MARTINE, VALLAT JEANMICHEL. Ultrastructural Immunocytochemical Abnormalities of Peripheral Myelin Proteins in Hereditary Sensory-Motor Neuropathies: 12 cases. Ann N Y Acad Sci 2006; 883:186-195. [DOI: 10.1111/j.1749-6632.1999.tb08581.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
BOERKOEL CF, INOUE K, REITER LT, WARNER LE, LUPSKI JR. Molecular Mechanisms for CMT1A Duplication and HNPP Deletion. Ann N Y Acad Sci 2006; 883:22-35. [DOI: 10.1111/j.1749-6632.1999.tb08563.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Sander MD, Abbasi D, Ferguson AL, Steyers CM, Wang K, Morcuende JA. The prevalence of hereditary neuropathy with liability to pressure palsies in patients with multiple surgically treated entrapment neuropathies. J Hand Surg Am 2005; 30:1236-41. [PMID: 16344182 DOI: 10.1016/j.jhsa.2005.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/13/2005] [Accepted: 06/13/2005] [Indexed: 02/02/2023]
Abstract
PURPOSE Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal-dominant peripheral neuropathy that results from deletion of a 1.5-Megabase pair (Mb) segment of the short arm (p) of chromosome 17. Hereditary neuropathy with liability to pressure palsies increases susceptibility of peripheral nerves to pressure and trauma and can be associated with symptoms at multiple anatomic entrapment sites. Many patients present with multiple upper-extremity entrapment neuropathies and the etiology is uncertain. We hypothesized that some of these patients have an underlying hereditary neuropathy. The purpose of this study was to determine the prevalence of HNPP in patients with multiple surgically treated upper-extremity entrapment neuropathies. METHODS The inclusion criterion for the study was history of more than 1 carpal tunnel release and/or ulnar nerve transposition. The exclusion criteria were history of diabetes or history of Charcot-Marie-Tooth neuropathy. Fifty-nine patients were in the study group. Two patients known to have the 17p11.2 deletion were used as controls. Genomic DNA was extracted from peripheral blood. Each sample was genotyped using polymerase chain reaction (PCR) amplification with short tandem repeat polymorphism markers within the 1.5-Mb region of 17p deleted in HNPP. Markers were scored as homozygous or heterozygous after resolution by polyacrylamide gel electrophoresis and silver staining. RESULTS The 2 control patients were homozygous for 11 markers. None of the 59 study patients were homozygous for all markers tested in the deleted region. No study patient had the 17p deletion diagnostic for HNPP. Based on the sample size of 59 patients the 95% confidence interval for the prevalence of the 17p11.2 deletion in this population is 0% to 5%. CONCLUSIONS We found no evidence for an association between HNPP and patients who have multiple surgical releases for upper-extremity entrapment neuropathies.
Collapse
Affiliation(s)
- Michael D Sander
- Department of Orthopaedic Surgery and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Chance PF. Chapter 24 Genetic evaluation of inherited motor/sensory neuropathy. ADVANCES IN CLINICAL NEUROPHYSIOLOGY, PROCEEDINGS OF THE 27TH INTERNATIONAL CONGRESS OF CLINICAL NEUROPHYSIOLOGY, AAEM 50TH ANNIVERSARY AND 57TH ANNUAL MEETING OF THE ACNS JOINT MEETING 2004; 57:228-42. [PMID: 16106622 DOI: 10.1016/s1567-424x(09)70360-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Inherited disorders of peripheral nerves represent a common group of neurologic diseases. Charcot-Marie-Tooth neuropathy type 1 (CMT1) is a genetically heterogeneous group of chronic demyelinating polyneuropathies with loci mapping to chromosome 17 (CMT1A), chromosome 1 (CMT1B), chromosome 16 (CMT1C) and chromosome 10 (CMT1D). CMT1A is most often associated with a tandem 1.5-megabase (Mb) duplication in chromosome 17p11.2-p12. In rare patients it may result from a point mutation in the peripheral myelin protein-22 (PMP22) gene. CMT1B is associated with point mutations in the myelin protein zero (Po or MPZ) gene. Mutations in the SIMPLE gene cause CMT1C, and CMT1D is the result of mutations in the early response 2 (ERG2 or Krox-20) gene. An X-linked form of CMT1 (CMT1X) maps to Xq13 and is associated with mutations in the connexin32 (Cx32) gene. Charcot-Marie-Tooth neuropathy type 2 (CMT2) is an axonal neuropathy that maps to chromosome 1p35-p36 (CMT2A), chromosome 3q13-q22 (CMT2B), chromosome 7p14 (CMT2D), chromosome 8p21 (CMT2E), chromosome 1q22-q23 (CMT2F) or chromosome 3q13 (CMT2G). Two X-linked forms of CMT2 have been reported (CMT2XA and CMT2XB), but the genes remain unidentified. An area that has recently expanded is the identification of autosomal recessive forms of CMT type 1 and 2. Of the eight recessive forms of CMT1 that have been identified to date, only two have been fully characterized at the molecular level (CMT1 AR B 1 and CMT1 AR D). Point mutations were found in the myotubularin-related protein-2 (MTM2) gene for CMT1 AR B1. CMT1 AR D is the result of point mutations in the N-myc downstream-regulated gene 1 (NDRG1). Dejerine-Sottas disease (DSD), also called hereditary motor and sensory neuropathy type III (HMSNIII), is a severe, infantile-onset demyelinating polyneuropathy syndrome that may be associated with point mutations in either the PMP22 gene, PO gene, EGR2 gene or the PRX gene (for the recessive form). It shares considerable clinical and pathological features with CMT1. Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder that results in a recurrent, episodic demyelinating neuropathy. HNPP is associated with a 1.5-Mb deletion in chromosome 17p11.2-p12 that results in reduced expression of the PMP22 gene. CMT1A and HNPP are reciprocal duplication/deletion syndromes that originate from unequal crossover during germ cell meiosis. Other rare forms of demyelinating peripheral neuropathies map to chromosome 8q, 10q and 11q.
Collapse
Affiliation(s)
- Phillip F Chance
- Neurogenetics Laboratory, Division of Genetics and Developmental Medicine, Box 356320, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
Hong YH, Kim M, Kim HJ, Sung JJ, Kim SH, Lee KW. Clinical and electrophysiologic features of HNPP patients with 17p11.2 deletion. Acta Neurol Scand 2003; 108:352-8. [PMID: 14616306 DOI: 10.1034/j.1600-0404.2003.00132.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Although the diagnosis of hereditary neuropathy with liability to pressure palsies (HNPP) is important for correct prognostic evaluation and genetic counseling, the diagnosis is frequently missed or delayed. Our main aim on undertaking this study was to characterize the electrodiagnostic features of HNPP. MATERIAL AND METHODS Clinical, electrophysiologic and molecular studies were performed on Korean HNPP patients with 17p11.2 deletion. The results of electrophysiologic studies were compared with those of Charcot-Marie-Tooth disease type 1 A (CMT1A) patients carrying 17p11.2 duplication. RESULTS Eight HNPP (50 motor, 39 sensory nerves) and six CMT1A (28 motor, 16 sensory nerves) patients were included. Sensory nerve conduction was slow in 97% of HNPP nerves. Motor nerve conduction at common entrapment sites was also abnormally slow in 87.5%, whereas at non-entrapment sites conduction slowing was infrequent. Distal motor latency (DML) was prolonged in 80% of HNPP nerves, and terminal latency index (TLI) was significantly lower in HNPP than in normal controls and in CMT1A patients (P < 0.01). In contrast to CMT1A, where severity of nerve conduction slowing was not different among nerve groups, HNPP sensory nerve conduction was more slowed in the median and ulnar nerves than in the sural nerve (P < 0.01), and DML was more prolonged in the median nerve than in the other motor nerves (P < 0.01). TLIs were significantly lower in HNPP than in the normal control and CMT1A patients for the median and ulnar nerves (P < 0.01), and were also significantly reduced for the peroneal nerve (P < 0.05) compared with those of the normal controls. CONCLUSION HNPP is characterized electrophysiologically by a generalized neuropathy, superimposed by focal entrapment neuropathies. The slowing of sensory conduction in nearly all nerves and the distal accentuation of motor conduction abnormalities are the main features of background polyneuropathy in HNPP. The distribution and severity of the background electrophysiologic abnormalities are closely related to the topography of common entrapment or compression sites, which suggests the possible pathogenetic role of subclinical pressure injury at these sites in the development of the distinct background polyneuropathy in HNPP.
Collapse
Affiliation(s)
- Y-H Hong
- Department of Neurology, Clinical Research Institute, and Neuroscience Research Institute in Seoul National University Hospital, College of Medicine, Seoul National University, Korea
| | | | | | | | | | | |
Collapse
|
14
|
Aarskog NK, Vedeler CA. Recombination breakpoints in the Charcot-Marie-Tooth 1A repeat sequence in Norwegian families. Acta Neurol Scand 2001; 104:97-100. [PMID: 11493226 DOI: 10.1034/j.1600-0404.2001.104002097.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the recombination breakpoint in a 3.2 kb junction fragment of the 24 kb CMT1A repeat sequences (CMT1A-REPs) on chromosome 17p11.2-12. MATERIALS AND METHODS Thirty-eight Norwegian CMT1 patients and 15 asymptomatic family members of 15 separate families including 10 normal controls were investigated using repeat (REP)-PCR. RESULTS Twenty-six (68.4%) of the CMT1 patients from 9 (60%) families were positive for the CMT1A duplication which was not found in any of the controls. In 89.9% of the REP-PCR positive families the recombination breakpoint was mapped to a 1.7 kb "hot-spot" region, and in 11.1% of the families to a 1.5 kb region telomeric to the 1.7 kb region. CONCLUSION The frequency and regions for CMT1A-REPs crossover events in Norwegian CMT1A cases are similar to what is found in other populations. REP-PCR is not, however, as sensitive as other diagnostic methods to detect the CMT1A duplication.
Collapse
Affiliation(s)
- N K Aarskog
- Department of Neurology and Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, University of Bergen, N-5021 Bergen, Norway.
| | | |
Collapse
|
15
|
Aarskog NK, Aadland S, Gjerde IO, Vedeler CA. Molecular genetic analysis of Charcot-Marie-Tooth 1A duplication in Norwegian patients by quantitative photostimulated luminescence imaging. J Neurol Sci 2001; 188:21-6. [PMID: 11489280 DOI: 10.1016/s0022-510x(01)00544-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Around 70% of Charcot-Marie-Tooth 1 (CMT1) cases are caused by a dominantly inherited 1.5-Mb duplication at 17p11.2-12 (CMT1A). Using photostimulated luminescence (PSL) imaging of MspI Southern blots, hybridization signals of the probe pVAW409R3a in relation to cohybridized probe SF85a, were densitometrically quantified and an RFLP allele-band ratio determined. A total of 55 Norwegian CMT patients and 16 asymptomatic family members from 26 separate families, clinically and neurophysiologically classified as CMT1 (n=46) and CMT2 (n=9), were studied. Thirty-two of 46 CMT1 cases (69.6%), all heterozygous but one homozygous for the pVAW409R3a MspI polymorphism, from 12 of 21 families (57.1%) were positive for the CMT1A duplication. In autosomal dominant familial cases (n=30), 26 of 30 cases (86.7%), all heterozygous, from six of seven families (85.7%) were positive for duplication. None of the CMT2 patients, asymptomatic family members or healthy controls were positive for duplication. The CMT1A frequency of duplication in Norwegian CMT1 patients is in general agreement with those reported in other European countries and the present results show that quantitative densitometric PSL imaging is a highly reliable test in diagnosing CMT1A duplication.
Collapse
Affiliation(s)
- N K Aarskog
- Department of Neurology, Haukeland Hospital, University of Bergen, N-5021, Bergen, Norway.
| | | | | | | |
Collapse
|
16
|
Nobbio L, Mancardi G, Grandis M, Levi G, Suter U, Nave KA, Windebank AJ, Abbruzzese M, Schenone A. PMP22 transgenic dorsal root ganglia cultures show myelin abnormalities similar to those of human CMT1A. Ann Neurol 2001; 50:47-55. [PMID: 11456309 DOI: 10.1002/ana.1034] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Charcot-Marie-Tooth 1A (CMT1A) neuropathy is caused by duplication of the peripheral myelin protein 22 (PMP22) gene, leading to protein overexpression. Although this protein has a role in regulating Schwann cell growth and peripheral myelin compaction, how altered concentrations of PMP22 impair myelination is unknown. We established dorsal root ganglia (DRG) cultures from a transgenic rat overexpressing PMP22 (PMP22tg) to study the behavior of PMP22tg Schwann cells in early stages of development and myelination. We used reverse transcriptase-polymerase chain reaction and light and electron microscopy to study PMP22 expression and myelin formation. Myelin ultrastructure was evaluated in sural nerves from CMT1A patients to compare experimental and human findings. PMP22tg DRG cultures contained a greater number of internodes devoid of myelin, in the absence of remyelination, and increased periodicity of myelin lamellae compared with normal cultures. Widening of myelin lamellae was also observed in CMT1A biopsy specimens. Our results suggest that both functions of PMP22, in regulating Schwann cell differentiation and contributing to peripheral myelin compaction, are affected by its overexpression. The presence of similar myelin abnormalities in PMP22tg cultures and human nerves emphasizes the importance of developing in vitro models of hereditary neuropathies to study their underlying pathomechanisms.
Collapse
Affiliation(s)
- L Nobbio
- Department of Neurological and Vision Sciences, University of Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Stögbauer F, Timmerman V, Van Broeckhoven C. 71st ENMC International Workshop, 6th workshop of the European Charcot-Marie-Tooth disease consortium: hereditary recurrent focal neuropathies, 24-25 September 1999, Soestduinen, the Netherlands. Neuromuscul Disord 2000; 10:518-24. [PMID: 10996785 DOI: 10.1016/s0960-8966(00)00110-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F Stögbauer
- Westfälische Wilhelms-Universität Münster, Klinik & Poliklinik für Neurologie, Albert Schweitzer Strasse 33, D-48129, Münster, Germany
| | | | | |
Collapse
|
19
|
Lewis RA, Sumner AJ, Shy ME. Electrophysiological features of inherited demyelinating neuropathies: A reappraisal in the era of molecular diagnosis. Muscle Nerve 2000; 23:1472-87. [PMID: 11003782 DOI: 10.1002/1097-4598(200010)23:10<1472::aid-mus3>3.0.co;2-#] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The observation that inherited demyelinating neuropathies have uniform conduction slowing and that acquired disorders have nonuniform or multifocal slowing was made prior to the identification of mutations in myelin-specific genes which cause many of the inherited disorders involving peripheral nerve myelin. It is now clear that the electrophysiological aspects of these disorders are more complex than previously realized. Specifically, certain mutations appear to induce nonuniform slowing of conduction which resemble the findings in acquired demyelinating neuropathies. It is clinically important to recognize the different electrodiagnostic patterns of the various inherited demyelinating neuropathies. In addition, an understanding of the relationship between mutations of specific genes and their associated neurophysiological findings is likely to facilitate understanding of the role of these myelin proteins in peripheral nerve function and of how abnormalities in myelin proteins lead to neuropathy. We therefore review the current information on the electrophysiological features of the inherited demyelinating neuropathies in hopes of clarifying their electrodiagnostic features and to shed light on the physiological consequences of the different genetic mutations.
Collapse
Affiliation(s)
- R A Lewis
- Department of Neurology, Wayne State University School of Medicine, UHC 8D, 4201 St. Antoine, Detroit, Michigan, USA.
| | | | | |
Collapse
|
20
|
Jetten AM, Suter U. The peripheral myelin protein 22 and epithelial membrane protein family. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:97-129. [PMID: 10697408 DOI: 10.1016/s0079-6603(00)64003-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The peripheral myelin protein 22 (PMP22) and the epithelial membrane proteins (EMP-1, -2, and -3) comprise a subfamily of small hydrophobic membrane proteins. The putative four-transmembrane domain structure as well as the genomic structure are highly conserved among family members. PMP22 and EMPs are expressed in many tissues, and functions in cell growth, differentiation, and apoptosis have been reported. EMP-1 is highly up-regulated during squamous differentiation and in certain tumors, and a role in tumorigenesis has been proposed. PMP22 is most highly expressed in peripheral nerves, where it is localized in the compact portion of myelin. It plays a crucial role in normal physiological and pathological processes in the peripheral nervous system. Progress in molecular genetics has revealed that genetic alterations in the PMP22 gene, including duplications, deletions, and point mutations, are responsible for several forms of hereditary peripheral neuropathies, including Charcot-Marie-Tooth disease type 1A (CMT1A), Dejerine-Sottas syndrome (DDS), and hereditary neuropathy with liability to pressure palsies (HNPP). The natural mouse mutants Trembler and Trembler-J contain a missense mutation in different hydrophobic domains of PMP22, resulting in demyelination and Schwann cell proliferation. Transgenic mice carrying many copies of the PMP22 gene and PMP22-null mice display a variety of defects in the initial steps of myelination and/or maintenance of myelination, whereas no pathological alterations are detected in other tissues normally expressing PMP22. Further characterization of the interactions of PMP22 and EMPs with other proteins as well as their regulation will provide additional insight into their normal physiological function and their roles in disease and possibly will result in the development of therapeutic tools.
Collapse
Affiliation(s)
- A M Jetten
- Cell Biology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
21
|
Dubourg O, Mouton P, Brice A, LeGuern E, Bouche P. Guidelines for diagnosis of hereditary neuropathy with liability to pressure palsies. Neuromuscul Disord 2000; 10:206-8. [PMID: 10734269 DOI: 10.1016/s0960-8966(99)00103-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- O Dubourg
- Service d'Explorations Fonctionnelles Neurologiques, Hôpital La Salpêtrière, 47 Bd. de l'Hôpital, 75651, Paris, France
| | | | | | | | | |
Collapse
|
22
|
Abstract
Considerable advances in our knowledge of the most frequently encountered group of inherited neuropathies, Charcot-Marie-Tooth neurpathy (CMT) and related disorders, have recently been made by genetic studies demonstrating that these disorders are caused by duplication, deletion or point mutations of specific genes of the peripheral myelin. The present classification of CMT and related disorders is based on a combination of clinical, neurophysiological, and genetic findings, and new genes and distinct mutations responsible for different clinical phenotypes are continuously being added. The genes that encode peripheral myelin protein of 22 kDa, protein zero, connexin-32 and early growth response-2 are the genes known to be involved in the pathogenesis of inherited neuropathies. Overexpression or underexpression of peripheral myelin protein of 22 kDa are causative for the most frequent forms of CMT-CMT1A and hereditary neuropathy with liability to pressure palsies--but the mechanisms that lead to incorrect myelin formation and maintenance are still unknown. Point mutations in the myelin genes can determine a loss of function, but in some cases an aberrant protein can act through a dominant negative or a toxic gain of function mechanism, disrupting the regular and precise relationship between the different myelin genes. Animal and in-vitro models of inherited neuropathies have been developed and will probably give the information that is necessary to clarify the pathogenetic mechanisms of demyelination.
Collapse
Affiliation(s)
- A Schenone
- Department of Neurological Sciences, University of Genova, Italy.
| | | |
Collapse
|
23
|
Abstract
Inherited disorders of peripheral nerves represent a common group of neurologic diseases. Charcot-Marie-Tooth neuropathy type 1 (CMT1) is a genetically heterogeneous group of chronic demyelinating polyneuropathies with loci mapping to chromosome 17 (CMT1A), chromosome 1 (CMT1B) and to another unknown autosome (CMT1C). CMT1A is most often associated with a tandem 1.5-megabase (Mb) duplication in chromosome 17p11.2-12, or in rare patients may result from a point mutation in the peripheral myelin protein-22 (PMP22) gene. CMT1B is associated with point mutations in the myelin protein zero (P0 or MPZ) gene. The molecular defect in CMT1C is unknown. X-linked Charcot-Marie-Tooth neuropathy (CMTX), which has clinical features similar to CMT1, is associated with mutations in the connexin32 gene. Charcot-Marie-Tooth neuropathy type 2 (CMT2) is an axonal neuropathy, also of undetermined cause. One form of CMT2 maps to chromosome 1p36 (CMT2A), another to chromosome 3p (CMT2B) and another to 7p (CMT2D). Dejerine-Sottas disease (DSD), also called hereditary motor and sensory neuropathy type III (HMSNIII), is a severe, infantile-onset demyelinating polyneuropathy syndrome that may be associated with point mutations in either the PMP22 gene or the P0 gene and shares considerable clinical and pathological features with CMT1. Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder that results in a recurrent, episodic demyelinating neuropathy. HNPP is associated with a 1.5-Mb deletion in chromosome 17p11.2-12 and results from reduced expression of the PMP22 gene. CMT1A and HNPP are reciprocal duplication/deletion syndromes originating from unequal crossover during germ cell meiosis. Other rare forms of demyelinating peripheral neuropathies map to chromosome 8q, 10q and 11q. Hereditary neuralgic amyotrophy (familial brachial plexus neuropathy) is an autosomal dominant disorder causing painful, recurrent brachial plexopathies and maps to chromosome 17q25.
Collapse
Affiliation(s)
- M P Keller
- Department of Pediatrics, University of Washington School of Medicine, Seattle, USA
| | | |
Collapse
|
24
|
Abstract
Remarkable advances have recently elucidated the molecular genetic basis of inherited peripheral neuropathies. These studies revealed a novel mutational mechanism of a large DNA duplication as a cause for a common autosomal dominant demyelinating neuropathy. A peripheral nerve myelin gene, PMP22, located within the duplication is responsible for the demyelinating neuropathy by virtue of a gene dosage effect. The identification of PMP22 and other genes involved in myelinopathies demonstrate that these diseases represent a spectrum of disorders resulting from defects in myelin structure, maintenance, and/or formation.
Collapse
Affiliation(s)
- J R Lupski
- Department of Molecular and Human Genetics, Texas Children's Hospital, Baylor College of Medicine, Houston 77030, USA
| |
Collapse
|
25
|
Abstract
Hereditary peripheral neuropathies have traditionally been classified by the clinical disease pattern and mode of inheritance. It only recently became possible to provide a more precise subdivision of the diseases by the discovery of distinct genetic defects. Most inherited peripheral neuropathies are caused by distinct mutations in the genes of three well known myelin components, peripheral myelin protein 22, P0 and the gap junction protein connexin 32. The present review addresses the expression and functional roles of these myelin components, as well as the putative pathomechanisms caused by distinct mutations in the corresponding genes. Moreover, the suitability of mutant animals, such as knock-out mice and transgenic rodents, as artificial models for these diseases and their use in the study of possible treatment strategies are discussed.
Collapse
Affiliation(s)
- R Martini
- Department of Neurology, University of Würzburg, Germany.
| | | | | |
Collapse
|