1
|
Wang X, Sang D, Zou L, Ge S, Yao Y, Fan J, Wang Q. Multiple Bioimaging Applications Based on the Excellent Properties of Nanodiamond: A Review. Molecules 2023; 28:molecules28104063. [PMID: 37241802 DOI: 10.3390/molecules28104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Nanodiamonds (NDs) are emerging as a promising candidate for multimodal bioimaging on account of their optical and spectroscopic properties. NDs are extensively utilized for bioimaging probes due to their defects and admixtures in their crystal lattice. There are many optically active defects presented in NDs called color centers, which are highly photostable, extremely sensitive to bioimaging, and capable of electron leap in the forbidden band; further, they absorb or emit light when leaping, enabling the nanodiamond to fluoresce. Fluorescent imaging plays a significant role in bioscience research, but traditional fluorescent dyes have some drawbacks in physical, optical and toxicity aspects. As a novel fluorescent labeling tool, NDs have become the focus of research in the field of biomarkers in recent years because of their various irreplaceable advantages. This review primarily focuses on the recent application progress of nanodiamonds in the field of bioimaging. In this paper, we will summarize the progress of ND research from the following aspects (including fluorescence imaging, Raman imaging, X-ray imaging, magnetic modulation fluorescence imaging, magnetic resonance imaging, cathodoluminescence imaging, and optical coherence tomography imaging) and expect to supply an outlook contribution for future nanodiamond exploration in bioimaging.
Collapse
Affiliation(s)
- Xinyue Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Dandan Sang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
- Shandong Liaocheng Laixin Powder Materials Science and Technology Co., Ltd., Liaocheng 252000, China
| | - Liangrui Zou
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Shunhao Ge
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Yu Yao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Jianchao Fan
- Shandong Liaocheng Laixin Powder Materials Science and Technology Co., Ltd., Liaocheng 252000, China
| | - Qinglin Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
- Shandong Liaocheng Laixin Powder Materials Science and Technology Co., Ltd., Liaocheng 252000, China
| |
Collapse
|
2
|
Fluorescent nanodiamond for nanotheranostic applications. Mikrochim Acta 2022; 189:447. [DOI: 10.1007/s00604-022-05545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
3
|
Wu Y, Weil T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200059. [PMID: 35343101 PMCID: PMC9259730 DOI: 10.1002/advs.202200059] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Indexed: 05/09/2023]
Abstract
Measuring certain quantities at the nanoscale is often limited to strict conditions such as low temperature or vacuum. However, the recently developed nanodiamond (ND) quantum sensing technology shows great promise for ultrasensitive diagnosis and probing subcellular parameters at ambient conditions. Atom defects (i.e., N, Si) within the ND lattice provide stable emissions and sometimes spin-dependent photoluminescence. These unique properties endow ND quantum sensors with the capacity to detect local temperature, magnetic fields, electric fields, or strain. In this review, some of the recent, most exciting developments in the preparation and application of ND sensors to solve current challenges in biology and medicine including ultrasensitive detection of virions and local sensing of pH, radical species, magnetic fields, temperature, and rotational movements, are discussed.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
4
|
Wu Y, Alam MNA, Balasubramanian P, Ermakova A, Fischer S, Barth H, Wagner M, Raabe M, Jelezko F, Weil T. Nanodiamond Theranostic for Light-Controlled Intracellular Heating and Nanoscale Temperature Sensing. NANO LETTERS 2021; 21:3780-3788. [PMID: 33881327 PMCID: PMC8289278 DOI: 10.1021/acs.nanolett.1c00043] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Temperature is an essential parameter in all biological systems, but information about the actual temperature in living cells is limited. Especially, in photothermal therapy, local intracellular temperature changes induce cell death but the local temperature gradients are not known. Highly sensitive nanothermometers would be required to measure and report local temperature changes independent of the intracellular environment, including pH or ions. Fluorescent nanodiamonds (ND) enable temperature sensing at the nanoscale independent of external conditions. Herein, we prepare ND nanothermometers coated with a nanogel shell and the photothermal agent indocyanine green serves as a heat generator and sensor. Upon irradiation, programmed cell death was induced in cancer cells with high spatial control. In parallel, the increase in local temperature was recorded by the ND nanothermometers. This approach represents a great step forward to record local temperature changes in different cellular environments inside cells and correlate these with thermal biology.
Collapse
Affiliation(s)
- Yingke Wu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Md Noor A Alam
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Anna Ermakova
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
for Physics, Johannes Gutenberg University
Mainz, Staudingerweg
7, 55128 Mainz, Germany
| | - Stephan Fischer
- Institute
of Pharmacology and Toxicology, University
of Ulm Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute
of Pharmacology and Toxicology, University
of Ulm Medical Center, 89081 Ulm, Germany
| | - Manfred Wagner
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marco Raabe
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Email for M.R.:
| | - Fedor Jelezko
- Institute
for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Email for F.J.:
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Email for T.W.:
| |
Collapse
|