1
|
Supramolecular Polymers: Recent Advances Based on the Types of Underlying Interactions. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Transition Metal-Catalyzed and MAO-Assisted Olefin Polymerization; Cyclic Isomers of Sinn’s Dimer Are Excellent Ligands in Iron Complexes and Great Methylating Reagents. Catalysts 2022. [DOI: 10.3390/catal12030312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Methylaluminoxane (MAO) is the most commonly used co-catalyst for transition metal-catalyzed olefin polymerization, but the structures of MAO species and their catalytic functions remain topics of intensive study. We are interested in MAO-assisted polymerization with catalysts L(R2)FeCl2 (L = tridentate pyridine-2,6-diyldimethanimine; imine-R = Me, Ph). It is our hypothesis that the MAO species is not merely enabling Fe–Me bond formation but functions as an integral part of the active catalyst, a MAO adduct of the Fe-precatalyst [L(R2)FeCl]+. In this paper, we explored the possible structures of acyclic and cyclic MAO species and their complexation with pre-catalysts [L(R2)FeCl]+ using quantum chemical approaches (MP2 and DFT). We report absolute and relative oxophilicities associated with the Fe ← O(MAO) adduct formation and provide compelling evidence that oxygen of an acyclic MAO species (i.e., O(AlMe2)2, 4) cannot compete with the O-donor in cyclic MAO species (i.e., (MeAlO)2, 7; MeAl(OAlMe2)2, cyclic 5). Significantly, our work demonstrates that intramolecular O → Al dative bonding results in cyclic isomers of MAO species (i.e., cyclic 5) with high oxophilicities. The stabilities of the [L(R2)FeClax(MAO)eq]+ species demonstrate that 5 provides for the ligating benefits of the cyclic MAO species 4 without the thermodynamically costly elimination of TMA. Mechanistic implications are discussed for the involvement of such Fe–O–Al bridged catalyst in olefin polymerization.
Collapse
|
3
|
Bossers KW, Valadian R, Garrevoet J, van Malderen S, Chan R, Friederichs N, Severn J, Wilbers A, Zanoni S, Jongkind MK, Weckhuysen BM, Meirer F. Heterogeneity in the Fragmentation of Ziegler Catalyst Particles during Ethylene Polymerization Quantified by X-ray Nanotomography. JACS AU 2021; 1:852-864. [PMID: 34240080 PMCID: PMC8243319 DOI: 10.1021/jacsau.1c00130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 05/03/2023]
Abstract
Ziegler-type catalysts are the grand old workhorse of the polyolefin industry, yet their hierarchically complex nature complicates polymerization activity-catalyst structure relationships. In this work, the degree of catalyst framework fragmentation of a high-density polyethylene (HDPE) Ziegler-type catalyst was studied using ptychography X-ray-computed nanotomography (PXCT) in the early stages of ethylene polymerization under mild reaction conditions. An ensemble consisting of 434 fully reconstructed ethylene prepolymerized Ziegler catalyst particles prepared at a polymer yield of 3.4 g HDPE/g catalyst was imaged. This enabled a statistical route to study the heterogeneity in the degree of particle fragmentation and therefore local polymerization activity at an achieved 3-D spatial resolution of 74 nm without requiring invasive imaging tools. To study the degree of catalyst fragmentation within the ensemble, a fragmentation parameter was constructed based on a k-means clustering algorithm that relates the quantity of polyethylene formed to the average size of the spatially resolved catalyst fragments. With this classification method, we have identified particles that exhibit weak, moderate, and strong degrees of catalyst fragmentation, showing that there is a strong heterogeneity in the overall catalyst particle fragmentation and thus polymerization activity within the entire ensemble. This hints toward local mass transfer limitations or other deactivation phenomena. The methodology used here can be applied to all polyolefin catalysts, including metallocene and the Phillips catalysts to gain statistically relevant fundamental insights in the fragmentation behavior of an ensemble of catalyst particles.
Collapse
Affiliation(s)
- Koen W. Bossers
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Roozbeh Valadian
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jan Garrevoet
- Photon
Science at Deutsches Elektronen-Synchrotron DESY, Hamburg 22603, Germany
| | - Stijn van Malderen
- Photon
Science at Deutsches Elektronen-Synchrotron DESY, Hamburg 22603, Germany
| | - Robert Chan
- SABIC, P.O. Box 319, 6160
AH Geleen, The Netherlands
| | | | - John Severn
- DSM
Materials Science Center, 6167 RD Geleen, The Netherlands
| | - Arnold Wilbers
- DSM
Materials Science Center, 6167 RD Geleen, The Netherlands
| | - Silvia Zanoni
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Maarten K. Jongkind
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic
Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Benedikter MJ, Ziegler F, Groos J, Hauser PM, Schowner R, Buchmeiser MR. Group 6 metal alkylidene and alkylidyne N-heterocyclic carbene complexes for olefin and alkyne metathesis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213315] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Taher D, Klaib S, Stein T, Korb M, Rheinwald G, Ghazzy A, Lang H. Titanocene thiolates [Ti]Cl(SCHR-2- C4H3S) and [Ti](SCHR-2- C4H3S)2 (R = H, Me): Synthesis, properties and reaction chemistry. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Copéret C, Allouche F, Chan KW, Conley MP, Delley MF, Fedorov A, Moroz IB, Mougel V, Pucino M, Searles K, Yamamoto K, Zhizhko PA. Bridging the Gap between Industrial and Well‐Defined Supported Catalysts. Angew Chem Int Ed Engl 2018; 57:6398-6440. [DOI: 10.1002/anie.201702387] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Florian Allouche
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Ka Wing Chan
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Matthew P. Conley
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
- Current address: Department of ChemistryUniversity of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Murielle F. Delley
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Alexey Fedorov
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Ilia B. Moroz
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
- Current address: Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de FranceUniversité Pierre et Marie Curie 11 Place Marcelin Berthelot 75005 Paris France
| | - Margherita Pucino
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Keith Searles
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Keishi Yamamoto
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Pavel A. Zhizhko
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences Vavilov street 28 119991 Moscow Russia
| |
Collapse
|
7
|
Copéret C, Allouche F, Chan KW, Conley MP, Delley MF, Fedorov A, Moroz IB, Mougel V, Pucino M, Searles K, Yamamoto K, Zhizhko PA. Eine Brücke zwischen industriellen und wohldefinierten Trägerkatalysatoren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201702387] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Christophe Copéret
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Florian Allouche
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Ka Wing Chan
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Matthew P. Conley
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
- Department of ChemistryUniversity of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Murielle F. Delley
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Alexey Fedorov
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Ilia B. Moroz
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Victor Mougel
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de FranceUniversité Pierre et Marie Curie 11 Place Marcelin Berthelot 75005 Paris Frankreich
| | - Margherita Pucino
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Keith Searles
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Keishi Yamamoto
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Pavel A. Zhizhko
- Departement Chemie und Angewandte Biowissenschaften, ETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
- A. N. Nesmeyanow-Institut für Elementorganische VerbindungenRussische Akademie der Wissenschaften Vavilov str. 28 119991 Moskau Russland
| |
Collapse
|
8
|
Abdelbagi ME, Alt HG. Unbridged 1- and 2-substituted bis(silylindenyl) zirconium(IV) and hafnium(IV) dichloride complexes as catalyst precursors for ethylene polymerization. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Chirik PJ. Carbon-Carbon Bond Formation in a Weak Ligand Field: Leveraging Open-Shell First-Row Transition-Metal Catalysts. Angew Chem Int Ed Engl 2017; 56:5170-5181. [DOI: 10.1002/anie.201611959] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Paul J. Chirik
- Department of Chemistry; Princeton University; Princeton NJ 08544 USA
| |
Collapse
|
10
|
Chirik PJ. Kohlenstoff-Kohlenstoff-Bindungsbildung in einem schwachen Ligandenfeld: Nutzung von Open-Shell-Übergangsmetallkatalysatoren der ersten Übergangsperiode. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611959] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Paul J. Chirik
- Department of Chemistry; Princeton University; Princeton NJ 08544 USA
| |
Collapse
|
11
|
Koltzenburg S, Maskos M, Nuyken O. Coordination Polymerization. Polym Chem 2017. [DOI: 10.1007/978-3-662-49279-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Mu H, Pan L, Song D, Li Y. Neutral Nickel Catalysts for Olefin Homo- and Copolymerization: Relationships between Catalyst Structures and Catalytic Properties. Chem Rev 2015; 115:12091-137. [DOI: 10.1021/cr500370f] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hongliang Mu
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Li Pan
- School
of Material Science and Engineering, and Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Dongpo Song
- Department
of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Yuesheng Li
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School
of Material Science and Engineering, and Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Elias HG. Carbon Chains. Macromolecules 2014. [DOI: 10.1002/9783527627226.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Reetz MT. One Hundred Years of the Max-Planck-Institut für Kohlenforschung. Angew Chem Int Ed Engl 2014; 53:8562-86. [DOI: 10.1002/anie.201403217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Indexed: 12/27/2022]
|
15
|
|
16
|
Kulkarni NV, Elkin T, Tumaniskii B, Botoshansky M, Shimon LJW, Eisen MS. Asymmetric Bis(formamidinate) Group 4 Complexes: Synthesis, Structure and Their Reactivity in the Polymerization of α-Olefins. Organometallics 2014. [DOI: 10.1021/om500345r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naveen V. Kulkarni
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tatyana Elkin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Boris Tumaniskii
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Mark Botoshansky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Linda J. W. Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moris S. Eisen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
17
|
Thiel W. Computational Catalysis-Past, Present, and Future. Angew Chem Int Ed Engl 2014; 53:8605-13. [DOI: 10.1002/anie.201402118] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Indexed: 01/03/2023]
|
18
|
|
19
|
Štěpnička P, Křečková P, Semler M, Čejka J. Preparation and Catalytic Evaluation of a Palladium Catalyst Deposited over Two-Dimensional Zeolite ITQ-2 Modified with N-Donor Groups. Z Anorg Allg Chem 2014. [DOI: 10.1002/zaac.201300389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Groppo E, Seenivasan K, Barzan C. The potential of spectroscopic methods applied to heterogeneous catalysts for olefinpolymerization. Catal Sci Technol 2013. [DOI: 10.1039/c2cy20559a] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
|
22
|
Zhang HX, Zhang H, Zhang CY, Bai CX, Zhang XQ. A simple modification makes a big improvement to ziegler-natta catalyst. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Glaser R, Sun X. Thermochemistry of the initial steps of methylaluminoxane formation. Aluminoxanes and cycloaluminoxanes by methane elimination from dimethylaluminum hydroxide and its dimeric aggregates. J Am Chem Soc 2011; 133:13323-36. [PMID: 21819106 DOI: 10.1021/ja109457j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Results are presented of ab initio studies at levels MP2(full)/6-31G* and MP2(full)/6-311G** of the hydrolysis of trimethylaluminum (TMA, 1) to dimethylaluminumhydroxide (DMAH, 2) and of the intramolecular 1,2-elimination of CH(4) from 2 itself to form methylaluminumoxide 3, from its dimeric aggregate 4 to form hydroxytrimethyldialuminoxane 5 and dimethylcyclodialuminoxane 6, and from its TMA aggregate 7 to form 8 and/or 9, the cyclic and open isomers of tetramethyldialuminoxane, respectively. Each methane elimination creates one new Lewis acid site, and dimethylether is used as a model oxygen-donor molecule to assess the most important effects of product stabilization by Lewis donor coordination. It is found that the irreversible formation of aggregate 4 (ΔG(298) = -29.2 kcal/mol) is about three times more exergonic than the reversible formation of aggregate 7 (ΔG(298) = -9.9 kcal/mol), that the reaction free enthalpies for the formations of 5 (ΔG(298) = -9.0 kcal/mol) and 6 (ΔG(298) = -18.8 kcal/mol) both are predicted to be quite clearly exergonic, and that there is a significant thermodynamic preference (ΔG(298) = -7.2 kcal/mol) for the formation of 6 over ring-opening of 5 to hydroxytrimethyldialuminoxane 10. The mechanism for oligomerization is discussed based on the bonding properties of dimeric aggregates and involves the homologation of HO-free aluminoxane with DMAH (i.e., 9 to 13), and any initially formed hydroxydialuminoxane 10 is easily capped to trialuminoxane 13. Our studies are consistent with and provide support for Sinn's proposal for the formation of oligoaluminoxanes, and in addition, the results point to the crucial role played by the kinetic stability of 5 and the possibility to form cyclodialuminoxane 6. Dialuminoxanes 9 and 10 are reversed-polarity heterocumulenes, and intramolecular O→Al dative bonding competes successfully with Al complexation by Lewis donors. Intramolecular O→Al dative bonding is impeded in cyclodialuminoxane 6, and the dicoordinate oxygen in 6 is a strong Lewis donor. Ethylene polymerization catalysts contain highly oxophilic transition metals, and our studies suggest that these transition metal catalysts should discriminate strongly in favor of cycloaluminoxane-O donors even if these are present only in small concentrations in the methylaluminoxane (MAO) cocatalyst.
Collapse
Affiliation(s)
- Rainer Glaser
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States.
| | | |
Collapse
|
24
|
Taube R, Schmidt U, Gehrke JP, Böhme P, Langlotz J, Wache S. New mechanistic aspects and structure activity relationships in the allyl nickel complex catalysed butadiene polymerization. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/masy.19930660122] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
|
26
|
Henry GRP, Drooghaag X, Vandeuren M, Sclavons M, Schanck A, Devaux J, Carlier V, Marchand-Brynaert J. Controlled reduction of polypropylene isotacticity and crystallinity by epimerization during reactive processing. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Alkyloxy- and aryloxy-titanocenes: Synthesis, solid-state structure and cyclic voltammetric studies. J Organomet Chem 2008. [DOI: 10.1016/j.jorganchem.2008.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
|
29
|
Ebert KH, Schenk G. Mechanisms of biopolymer growth: the formation of dextran and levan. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 30:179-221. [PMID: 4872298 DOI: 10.1002/9780470122754.ch4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
|
31
|
Olabisi1 O, Atiqullah M, Kaminsky W. Group 4 Metallocenes: Supported and Unsupported. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/15321799708018374] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Olagoke Olabisi1
- a King Fahd University of Petroleum and Minerals The Research Institute KFUPM , Box 1725, Dhahran, 31261, Saudi Arabia
- c Saudi Aramco, Consulting Services Department , P.O. Box 9134, Dhahran, 31311, Saudi Arabia
| | - Muhammad Atiqullah
- a King Fahd University of Petroleum and Minerals The Research Institute KFUPM , Box 1725, Dhahran, 31261, Saudi Arabia
| | - Walter Kaminsky
- b Universität Hamburg Institut Für Technische und Macromolekulare Chemie , Bundesstr, 45 20146, Hamburg, Germany
| |
Collapse
|
32
|
Synthese und Eigenschaften von optisch aktiven Polymeren. ADVANCES IN POLYMER SCIENCE 2006. [DOI: 10.1007/bfb0050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
33
|
Calderazzo F, Englert U, Pampaloni G, Santi R, Sommazzi A, Zinna M. Bis(arylimino)pyridine derivatives of Group 4 metals: preparation, characterization and activity in ethylene polymerization. Dalton Trans 2005:914-22. [PMID: 15726145 DOI: 10.1039/b415997g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium tetrachloride reacts with 2,6-bis[(1-phenylimino)ethyl]pyridine, 1, and 2,6-bis[1-(2,6-diisopropylphenylimino)ethyl]pyridine, 2, giving the adducts of general formulae [Ti1Cl3]Cl, 3, and [Ti2Cl3]Cl, 6, the latter through the intermediacy of the covalently bonded [Ti2Cl4], 4. Heating 6 leads to reduction to the titanium(III) derivative [Ti2Cl3], 12, the latter characterized by X-ray diffraction methods. The reaction of [Ti1Cl3]Cl with a toluene solution of MAO proceeds with methylation at the ortho-position of the pyridine ring to give the titanium(iv) derivative [Ti(C22H21N3)Cl3], 8. The reaction of [Ti2Cl3]Cl with MAO gives a mixture of products containing [Ti2Cl2(OAlCl3)], 9. Compound 9, which has been prepared independently by reacting 6 with AlOCl, is a rare case of a compound containing the -OAlCl3 moiety, as shown by a single-crystal X-ray diffraction study. From the tetrachlorides of zirconium and hafnium with 1 or 2, the corresponding adducts [M(L)Cl4] have been obtained in high yields. These derivatives of Group 4 metals act as ethylene polymerization catalytic precursors: the substitution of the phenyl ring of the imino fragment strongly influences the catalytic activity which is 5,544 kg(PE) mol(Ti)(-1) h(-1) in the case of 3 and 267 kg(PE) mol(Ti)(-1) h(-1) with 6. Catalytic activity has been observed for zirconium and hafnium too, the activity decreasing from zirconium to hafnium, under comparable conditions.
Collapse
Affiliation(s)
- Fausto Calderazzo
- Università di Pisa, Dipartimento di Chimica e Chimica Industriale, Via Risorgimento 35, I-56126, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Schmidt R, Welch MB, Knudsen RD, Gottfried S, Alt HG. N,N,N-Tridentate iron(II) and vanadium(III) complexes. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.molcata.2004.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Aulbach M, Küber F. Metallocene - maßgeschneiderte Werkzeuge zur Herstellung von Polyolefinen. CHEM UNSERER ZEIT 2004. [DOI: 10.1002/ciuz.19940280410] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Kunrath FA, Mauler RS, de Souza RF, Casagrande OL. Synthesis and properties of branched polyethylene/high‐density polyethylene blends using a homogeneous binary catalyst system composed of early and late transition metal complexes. MACROMOL CHEM PHYS 2002. [DOI: 10.1002/1521-3935(200210)203:14<2058::aid-macp2058>3.0.co;2-#] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fábio A. Kunrath
- Instituto de Química de Araraquara, UNESP, C. P. 355, Araraquara, SP, 14800‐900, Brazil
| | - Raquel S. Mauler
- Laboratory of Molecular Catalysis, Instituto de Química, UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, RS, 91509‐900, Brazil
| | - Roberto F. de Souza
- Laboratory of Molecular Catalysis, Instituto de Química, UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, RS, 91509‐900, Brazil
| | - Osvaldo L. Casagrande
- Laboratory of Molecular Catalysis, Instituto de Química, UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre, RS, 91509‐900, Brazil
| |
Collapse
|
38
|
Tobisch S, Taube R. Density Functional (DFT) Study of the Anti−Syn Isomerization of the Butenyl Group in Cationic and Neutral (Butenyl)(butadiene)(monoligand)nickel(II) Complexes. Organometallics 1999. [DOI: 10.1021/om9810302] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sven Tobisch
- Institut für Physikalische Chemie der Martin-Luther-Universität Halle-Wittenberg, Fachbereich Chemie (Merseburg), D-06099 Halle, Germany, and Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Rudolf Taube
- Institut für Physikalische Chemie der Martin-Luther-Universität Halle-Wittenberg, Fachbereich Chemie (Merseburg), D-06099 Halle, Germany, and Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| |
Collapse
|
39
|
Tobisch S, Bögel H, Taube R. Mechanistic Studies of the 1,4-Polymerization of Butadiene According to the π-Allyl-Insertion Mechanism. 2. Density Functional Study of the C−C Bond Formation Reaction in Cationic and Neutral (η3-Crotyl)(η2-/η4-butadiene)nickel(II) Complexes [Ni(C4H7)(C4H6)]+, [Ni(C4H7)(C4H6)L]+ (L = C2H4, PH3), and [Ni(C4H7)(C4H6)X] (X- = I-). Organometallics 1998. [DOI: 10.1021/om9705923] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sven Tobisch
- Institut für Physikalische Chemie der Martin-Luther-Universität Halle-Wittenberg, Fachbereich Chemie (Merseburg), D-06099 Halle, Germany, and Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Horst Bögel
- Institut für Physikalische Chemie der Martin-Luther-Universität Halle-Wittenberg, Fachbereich Chemie (Merseburg), D-06099 Halle, Germany, and Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - Rudolf Taube
- Institut für Physikalische Chemie der Martin-Luther-Universität Halle-Wittenberg, Fachbereich Chemie (Merseburg), D-06099 Halle, Germany, and Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| |
Collapse
|
40
|
Koltzenburg S. The influence of methylalumoxane (MAO) on the isoselective propene polymerization with the homogeneous metallocene Me2Si(Benz[e]Ind)2ZrCl2. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1381-1169(96)00370-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Abu-Surrah AS, Rieger B. Komplexe „später” Übergangsmetalle: Katalysatoren für eine neue Generation organischer Polymere. Angew Chem Int Ed Engl 1996. [DOI: 10.1002/ange.19961082107] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Brintzinger HH, Fischer D, Mülhaupt R, Rieger B, Waymouth R. Stereospezifische Olefinpolymerisation mit chiralen Metallocenkatalysatoren. Angew Chem Int Ed Engl 1995. [DOI: 10.1002/ange.19951071104] [Citation(s) in RCA: 490] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Wulff G. Main-Chain Chirality and Optical Activity in Polymers Consisting of C?C Chains. ACTA ACUST UNITED AC 1989. [DOI: 10.1002/anie.198900211] [Citation(s) in RCA: 220] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Wulff G. Hauptkettenchiralität und optische Aktivität von Polymeren aus C-C-Ketten. Angew Chem Int Ed Engl 1989. [DOI: 10.1002/ange.19891010105] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Herrmann WA. Organometallchemie in hohen Oxidationsstufen, eine Herausforderung – das Beispiel Rhenium. Angew Chem Int Ed Engl 1988. [DOI: 10.1002/ange.19881001004] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Configuration. Macromolecules 1977. [DOI: 10.1007/978-1-4615-7364-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Carbon Chains. Macromolecules 1977. [DOI: 10.1007/978-1-4615-7364-7_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Introduction. Macromolecules 1977. [DOI: 10.1007/978-1-4615-7364-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
|
50
|
|