Reutter F, Jung G, Baier W, Treyer B, Bessler WG, Wiesmüller KH. Immunostimulants and Toll-like receptor ligands obtained by screening combinatorial lipopeptide collections*.
ACTA ACUST UNITED AC 2005;
65:375-83. [PMID:
15787968 DOI:
10.1111/j.1399-3011.2005.00242.x]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Synthetic lipopeptides carrying the head group of bacterial lipoproteins are specific ligands of Toll-like receptors (TLR). The three fatty acids containing lipopeptides with the tripalmitoyl-S-glyceryl-cysteinyl N-terminus (Pam(3)Cys) are agonists of TLR2. The structurally related lipopeptides with a head group lacking the fatty acyl residue at the amino-terminus (Pam(2)Cys) stimulate TLR2 and 6. To investigate the influence of the peptide chain of lipohexapeptides with a free N-terminus with regard to their ability to enhance B-cell proliferation, a randomized S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteinyl-pentapeptide amide collection Pam(2)CysXXXXX and 5 x 19 subcollections (Pam(2)CysOXXXX, Pam(2)CysXOXXX, Pam(2)CysXXOXX, Pam(2)CysXXXOX, Pam(2)CysXXXXO, O: all protein amino acids except Cys) were prepared by parallel solid-phase synthesis. The collection represents synthetic lipopeptide analogues of the numerous bacterial lipoproteins and of mycoplasma lipoprotein. Each of the 95 subcollections is characterized by one defined and four degenerated amino acid positions thus comprising 19(4) individual lipopeptides with free N-terminal amino groups. High-performance liquid chromatography electrospray mass spectrometry (HPLC-ESI-MS) was applied for the analytical characterization of the lipohexapeptide amide subcollections and for the individual lipohexapeptide amides. The subcollections were tested for polyclonal activation of murine spleen cells, deconvolution led to highly active single S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteinyl-pentapeptide amides.
Collapse