1
|
He W, Zhao Y, Xing S, Zhang Y, Wang L, Liu H. DNA Tetrahedron Framework Guided Conjugation and Assembly of Gold Nanoparticles. Chempluschem 2022; 87:e202200159. [PMID: 35822636 DOI: 10.1002/cplu.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Au nanoparticles (AuNPs) have been extensively used to assemble programmable structures that feature various functions. One central challenge of precisely directed assembly is to make valence-programmable building blocks. Herein, we use the DNA tetrahedron framework to stoichiometrically conjugate to Au nanoparticles, which results in monovalent building blocks at nanometer scale. We further fabricated high-order Au-tetrahedron structures to verify the ability of the blocks for building assemblies. These structures represent an exploration of an avenue to monovalent AuNPs, and provide the feasibility of precisely manipulating nanoparticles into prescribed assemblies.
Collapse
Affiliation(s)
- Wei He
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Zhao
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Shu Xing
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Yinan Zhang
- Key Laboratory of Advanced Civil Engineering Materials of, Ministry of Education, Shanghai Research Institute for Intelligent Autonomous Systems, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201200, P. R. China
| | - Huajie Liu
- Key Laboratory of Advanced Civil Engineering Materials of, Ministry of Education, Shanghai Research Institute for Intelligent Autonomous Systems, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
2
|
Guo L, Zhang Y, Wang Y, Xie M, Dai J, Qu Z, Zhou M, Cao S, Shi J, Wang L, Zuo X, Fan C, Li J. Directing Multivalent Aptamer-Receptor Binding on the Cell Surface with Programmable Atom-Like Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202117168. [PMID: 35226386 DOI: 10.1002/anie.202117168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Multivalent interactions of biomolecules play pivotal roles in physiological and pathological settings. Whereas the directionality of the interactions is crucial, the state-of-the-art synthetic multivalent ligand-receptor systems generally lack programmable approaches for orthogonal directionality. Here, we report the design of programmable atom-like nanoparticles (aptPANs) to direct multivalent aptamer-receptor binding on the cell interface. The positions of the aptamer motifs can be prescribed on tetrahedral DNA frameworks to realize atom-like orthogonal valence and direction, enabling the construction of multivalent molecules with fixed aptamer copy numbers but different directionality. These directional-yet-flexible aptPAN molecules exhibit the adaptability to the receptor distribution on cell surfaces. We demonstrate the high-affinity tumor cell binding with a linear aptPAN oligomer (≈13-fold improved compared to free aptamers), which leads to ≈50 % suppression of cell growth.
Collapse
Affiliation(s)
- Linjie Guo
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yueyue Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yue Wang
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mo Xie
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiangbing Dai
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Zhibei Qu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Mo Zhou
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Shuting Cao
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiye Shi
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jiang Li
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
3
|
Guo L, Zhang Y, Wang Y, Xie M, Dai J, Qu Z, Zhou M, Cao S, Shi J, Wang L, Zuo X, Fan C, Li J. Directing Multivalent Aptamer‐Receptor Binding on the Cell Surface with Programmable Atom‐Like Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Linjie Guo
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- The Interdisciplinary Research Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Yueyue Zhang
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yue Wang
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mo Xie
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Jiangbing Dai
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Zhibei Qu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University 200240 Shanghai China
| | - Mo Zhou
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Shuting Cao
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Jiye Shi
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Lihua Wang
- The Interdisciplinary Research Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University 200240 Shanghai China
| | - Jiang Li
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- The Interdisciplinary Research Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University 200240 Shanghai China
| |
Collapse
|
4
|
Copp W, Pontarelli A, Wilds CJ. Recent Advances of DNA Tetrahedra for Therapeutic Delivery and Biosensing. Chembiochem 2021; 22:2237-2246. [PMID: 33506614 DOI: 10.1002/cbic.202000835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/16/2021] [Indexed: 11/11/2022]
Abstract
The chemical and self-assembly properties of nucleic acids make them ideal for the construction of discrete structures and stimuli-responsive devices for a diverse array of applications. Amongst the various three-dimensional assemblies, DNA tetrahedra are of particular interest, as these structures have been shown to be readily taken up by the cell, by the process of caveolin-mediated endocytosis, without the need for transfection agents. Moreover, these structures can be readily modified with a diverse range of pendant groups to confer greater functionality. This minireview highlights recent advances related to applications of this interesting DNA structure including the delivery of therapeutic agents ranging from small molecules to oligonucleotides in addition to its use for sensing and imaging various species within the cell.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Alexander Pontarelli
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
5
|
Copp W, Wilds CJ. O 6 -Alkylguanine DNA Alkyltransferase Mediated Disassembly of a DNA Tetrahedron. Chemistry 2020; 26:14802-14806. [PMID: 32543755 DOI: 10.1002/chem.202002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 11/05/2022]
Abstract
Tetrahedron DNA structures were formed by the assembly of three-way junction (TWJ) oligonucleotides containing O6 -2'-deoxyguanosine-alkylene-O6 -2'-deoxyguanosine (butylene and heptylene linked) intrastrand cross-links (IaCLs) lacking a phosphodiester group between the 2'-deoxyribose residues. The DNA tetrahedra containing TWJs were shown to undergo an unhooking reaction by the human DNA repair protein O6 -alkylguanine DNA alkyltransferase (hAGT) resulting in structure disassembly. The unhooking reaction of hAGT towards the DNA tetrahedra was observed to be moderate to virtually complete depending on the protein equivalents. DNA tetrahedron structures have been explored as drug delivery platforms that release their payload in response to triggers, such as light, chemical agents or hybridization of release strands. The dismantling of DNA tetrahedron structures by a DNA repair protein contributes to the armamentarium of approaches for drug release employing DNA nanostructures.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
6
|
Mao X, Liu M, Yan L, Deng M, Li F, Li M, Wang F, Li J, Wang L, Tian Y, Fan C, Zuo X. Programming Biomimetically Confined Aptamers with DNA Frameworks. ACS NANO 2020; 14:8776-8783. [PMID: 32484652 DOI: 10.1021/acsnano.0c03362] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Active sites of proteins are generally encapsulated within three-dimensional peptide scaffolds that provide the molecular-scale confinement microenvironment. Nevertheless, the ability to tune thermodynamic stability in biomimetic molecular confinement relies on the macromolecular crowding effect of lack of stoichiometry and reconfigurability. Here, we report a framework nucleic acid (FNA)-based strategy to increase thermodynamic stability of aptamers. We demonstrate that the molecular-scale confinement increases the thermodynamic stability of aptamers via facilitated folding kinetics, which is confirmed by the single-molecule FRET (smFRET). Unfavorable conformations of aptamers are restricted as revealed by the Monte Carlo simulation. The binding affinity of the DNA framework-confined aptamer is improved by ∼3-fold. With a similar strategy we improve the catalytic activity of hemin-binding aptamer. Our approach thus shows high potential for designing protein-mimicking DNA nanostructures with enhanced binding affinity and catalytic activity for biosensing and biomedical engineering.
Collapse
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Lei Yan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengying Deng
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| |
Collapse
|
7
|
Taylor LLK, Riddell IA, Smulders MMJ. Selbstorganisation von funktionellen diskreten dreidimensionalen Architekturen in Wasser. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lauren L. K. Taylor
- School of Chemistry; University of Manchester; Oxford Road M13 9PL Großbritannien
| | - Imogen A. Riddell
- School of Chemistry; University of Manchester; Oxford Road M13 9PL Großbritannien
| | - Maarten M. J. Smulders
- Laboratory of Organic Chemistry; Wageningen University, P.O. Box 8026; 6700EG Wageningen Niederlande
| |
Collapse
|
8
|
Taylor LLK, Riddell IA, Smulders MMJ. Self-Assembly of Functional Discrete Three-Dimensional Architectures in Water. Angew Chem Int Ed Engl 2018; 58:1280-1307. [DOI: 10.1002/anie.201806297] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | - Imogen A. Riddell
- School of Chemistry; University of Manchester; Oxford Road M13 9PL UK
| | - Maarten M. J. Smulders
- Laboratory of Organic Chemistry; Wageningen University, P.O. Box 8026; 6700EG Wageningen The Netherlands
| |
Collapse
|
9
|
Rennie ML, Fox GC, Pérez J, Crowley PB. Auto‐regulated Protein Assembly on a Supramolecular Scaffold. Angew Chem Int Ed Engl 2018; 57:13764-13769. [DOI: 10.1002/anie.201807490] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Martin L. Rennie
- School of ChemistryNational University of Ireland Galway University Road Galway Ireland
| | - Gavin C. Fox
- Synchrotron SOLEILL'Orme des Merisiers Saint-Aubin BP48 91192 Gif-sur-Yvette Cedex France
| | - Javier Pérez
- Synchrotron SOLEILL'Orme des Merisiers Saint-Aubin BP48 91192 Gif-sur-Yvette Cedex France
| | - Peter B. Crowley
- School of ChemistryNational University of Ireland Galway University Road Galway Ireland
| |
Collapse
|
10
|
Rennie ML, Fox GC, Pérez J, Crowley PB. Auto‐regulated Protein Assembly on a Supramolecular Scaffold. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Martin L. Rennie
- School of ChemistryNational University of Ireland Galway University Road Galway Ireland
| | - Gavin C. Fox
- Synchrotron SOLEILL'Orme des Merisiers Saint-Aubin BP48 91192 Gif-sur-Yvette Cedex France
| | - Javier Pérez
- Synchrotron SOLEILL'Orme des Merisiers Saint-Aubin BP48 91192 Gif-sur-Yvette Cedex France
| | - Peter B. Crowley
- School of ChemistryNational University of Ireland Galway University Road Galway Ireland
| |
Collapse
|
11
|
Rahbani JF, Hsu JCC, Chidchob P, Sleiman HF. Single-stranded templates as railroad tracks for hierarchical assembly of DNA origami. NANOSCALE 2018; 10:13994-13999. [PMID: 29995052 DOI: 10.1039/c8nr03185a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
DNA origami is one of the most effective tools for bottom-up construction of novel objects and devices at the nanometer-scale. However, many applications require larger structures than can be obtained with the conventional single-stranded scaffold, typically 7249 nucleotides. Here, we address this limitation by developing custom-made single-stranded scaffolds that bind pre-assembled origami tiles and induce their one-dimensional organization in high yields. Our synthetic method allows the conversion of multiple repetitive and unique sequences into correctly assembled, large backbones, and to finely tune the position and frequency of each building block. Granted with these regions, three and five origami tiles were successfully arranged in 1-D with the aid of one or two scaffolds, forming a nano-"railroad track". This new method increases length scale in DNA origami without increasing cost and complexity, and is anticipated to increase the yield of other approaches aiming to assemble large origami structures.
Collapse
Affiliation(s)
- Janane F Rahbani
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | - John C C Hsu
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | - Pongphak Chidchob
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
12
|
Schwenger A, Jurkowski TP, Richert C. Capturing and Stabilizing Folded Proteins in Lattices Formed with Branched Oligonucleotide Hybrids. Chembiochem 2018; 19:1523-1530. [DOI: 10.1002/cbic.201800145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Alexander Schwenger
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Tomasz P. Jurkowski
- Institut für Biochemie und Technische BiochemieUniversität Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Clemens Richert
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
13
|
Benn F, Haley NEC, Lucas AE, Silvester E, Helmi S, Schreiber R, Bath J, Turberfield AJ. Chiral DNA Origami Nanotubes with Well-Defined and Addressable Inside and Outside Surfaces. Angew Chem Int Ed Engl 2018; 57:7687-7690. [DOI: 10.1002/anie.201800275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/16/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Florence Benn
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Natalie E. C. Haley
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Alexandra E. Lucas
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Emma Silvester
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Seham Helmi
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Robert Schreiber
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Jonathan Bath
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Andrew J. Turberfield
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| |
Collapse
|
14
|
Benn F, Haley NEC, Lucas AE, Silvester E, Helmi S, Schreiber R, Bath J, Turberfield AJ. Chiral DNA Origami Nanotubes with Well-Defined and Addressable Inside and Outside Surfaces. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Florence Benn
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Natalie E. C. Haley
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Alexandra E. Lucas
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Emma Silvester
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Seham Helmi
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Robert Schreiber
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Jonathan Bath
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| | - Andrew J. Turberfield
- University of Oxford; Department of Physics; Clarendon Laboratory; Parks Road Oxford OX1 3PU UK
| |
Collapse
|
15
|
Control of enzyme reactions by a reconfigurable DNA nanovault. Nat Commun 2017; 8:992. [PMID: 29051565 PMCID: PMC5648847 DOI: 10.1038/s41467-017-01072-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022] Open
Abstract
Biological systems use compartmentalisation as a general strategy to control enzymatic reactions by precisely regulating enzyme–substrate interactions. With the advent of DNA nanotechnology, it has become possible to rationally design DNA-based nano-containers with programmable structural and dynamic properties. These DNA nanostructures have been used to cage enzymes, but control over enzyme–substrate interactions using a dynamic DNA nanostructure has not been achieved yet. Here we introduce a DNA origami device that functions as a nanoscale vault: an enzyme is loaded in an isolated cavity and the access to free substrate molecules is controlled by a multi-lock mechanism. The DNA vault is characterised for features such as reversible opening/closing, cargo loading and wall porosity, and is shown to control the enzymatic reaction catalysed by an encapsulated protease. The DNA vault represents a general concept to control enzyme–substrate interactions by inducing conformational changes in a rationally designed DNA nanodevice. DNA nanostructures can cage enzymes but currently fall short of controlling their reactions with substrates. Here, the authors enclose an enzyme inside a dynamic DNA vault, which regulates its access to substrate molecules—and thus its enzymatic activity—through a multi-lock mechanism.
Collapse
|
16
|
Udomprasert A, Kangsamaksin T. DNA origami applications in cancer therapy. Cancer Sci 2017; 108:1535-1543. [PMID: 28574639 PMCID: PMC5543475 DOI: 10.1111/cas.13290] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022] Open
Abstract
Due to the complexity and heterogeneity of cancer, the development of cancer diagnosis and therapy is still progressing, and a complete understanding of cancer biology remains elusive. Recently, cancer nanomedicine has gained much interest as a promising diagnostic and therapeutic strategy, as a wide range of nanomaterials possess unique physical properties that can render drug delivery systems safer and more effective. Also, targeted drug delivery and precision medicine have now become a new paradigm in cancer therapy. With nanocarriers, chemotherapeutic drugs could be directly delivered into target cancer cells, resulting in enhanced efficiency with fewer side-effects. DNA, a biomolecule with molecular self-assembly properties, has emerged as a versatile nanomaterial to construct multifunctional platforms; DNA nanostructures can be modified with functional groups to improve their utilities as biosensors or drug carriers. Such applications have become possible with the advent of the scaffolded DNA origami method. This breakthrough technique in structural DNA nanotechnology provides an easier and faster way to construct DNA nanostructures with various shapes. Several experiments proved that DNA origami nanostructures possess abilities to enhance efficacies of chemotherapy, reduce adverse side-effects, and even circumvent drug resistance. Here, we highlight the principles of the DNA origami technique and its applications in cancer therapeutics and discuss current challenges and opportunities to improve cancer detection and targeted drug delivery.
Collapse
Affiliation(s)
- Anuttara Udomprasert
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Thaned Kangsamaksin
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Sulfo-SMCC Prevents Annealing of Taxol-Stabilized Microtubules In Vitro. PLoS One 2016; 11:e0161623. [PMID: 27561096 PMCID: PMC4999061 DOI: 10.1371/journal.pone.0161623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 08/09/2016] [Indexed: 11/21/2022] Open
Abstract
Microtubule structure and functions have been widely studied in vitro and in cells. Research has shown that cysteines on tubulin play a crucial role in the polymerization of microtubules. Here, we show that blocking sulfhydryl groups of cysteines in taxol-stabilized polymerized microtubules with a commonly used chemical crosslinker prevents temporal end-to-end annealing of microtubules in vitro. This can dramatically affect the length distribution of the microtubules. The crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, sulfo-SMCC, consists of a maleimide and an N-hydroxysuccinimide ester group to bind to sulfhydryl groups and primary amines, respectively. Interestingly, addition of a maleimide dye alone does not show the same interference with annealing in stabilized microtubules. This study shows that the sulfhydryl groups of cysteines of tubulin that are vital for the polymerization are also important for the subsequent annealing of microtubules.
Collapse
|
18
|
Taylor AI, Beuron F, Peak-Chew SY, Morris EP, Herdewijn P, Holliger P. Nanostructures from Synthetic Genetic Polymers. Chembiochem 2016; 17:1107-10. [PMID: 26992063 PMCID: PMC4973672 DOI: 10.1002/cbic.201600136] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/22/2022]
Abstract
Nanoscale objects of increasing complexity can be constructed from DNA or RNA. However, the scope of potential applications could be enhanced by expanding beyond the moderate chemical diversity of natural nucleic acids. Here, we explore the construction of nano-objects made entirely from alternative building blocks: synthetic genetic polymers not found in nature, also called xeno nucleic acids (XNAs). Specifically, we describe assembly of 70 kDa tetrahedra elaborated in four different XNA chemistries (2'-fluro-2'-deoxy-ribofuranose nucleic acid (2'F-RNA), 2'-fluoroarabino nucleic acids (FANA), hexitol nucleic acids (HNA), and cyclohexene nucleic acids (CeNA)), as well as mixed designs, and a ∼600 kDa all-FANA octahedron, visualised by electron microscopy. Our results extend the chemical scope for programmable nanostructure assembly, with implications for the design of nano-objects and materials with an expanded range of structural and physicochemical properties, including enhanced biostability.
Collapse
Affiliation(s)
- Alexander I Taylor
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- Department of Biology/Centre for Applied Synthetic Biology, Concordia University, 7141 Rue Sherbrooke, Montreal, H4B 1R6, Canada.
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories), 237 Fulham Road, London, SW3 6JB, UK
| | - Sew-Yeu Peak-Chew
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories), 237 Fulham Road, London, SW3 6JB, UK
| | - Piet Herdewijn
- Rega Institute, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
- Institute of Systems and Synthetic Biology, Université Evry, 5 rue Henri Desbrueres, 91030, Evry Cedex, France
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
19
|
Pfeifer W, Saccà B. From Nano to Macro through Hierarchical Self-Assembly: The DNA Paradigm. Chembiochem 2016; 17:1063-80. [DOI: 10.1002/cbic.201600034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Wolfgang Pfeifer
- Centre for Medical Biotechnology (ZMB); University of Duisburg-Essen; Universitätstrasse 2 45117 Essen Germany
| | - Barbara Saccà
- Centre for Medical Biotechnology (ZMB); University of Duisburg-Essen; Universitätstrasse 2 45117 Essen Germany
| |
Collapse
|
20
|
Wu ZS, Shen Z, Tram K, Salena BJ, Li Y. Topological DNA Assemblies Containing Identical or Fraternal Twins. Chembiochem 2016; 17:1142-5. [PMID: 26994736 DOI: 10.1002/cbic.201600036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Zai-Sheng Wu
- Departments of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
- Cancer Metastasis Alert and Prevention Center; Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy; College of Chemistry; Fuzhou University; Fuzhou 350002 China
| | - Zhifa Shen
- Departments of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
- School of Laboratory Medicine and Life Sciences; Wenzhou Medical University; Wenzhou Chashan University Town Wenzhou Zhejiang 325035 China
| | - Kha Tram
- Departments of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Bruno J. Salena
- Department of Medicine; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Yingfu Li
- Departments of Biochemistry and Biomedical Sciences; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
21
|
Mao X, Simon AJ, Pei H, Shi J, Li J, Huang Q, Plaxco KW, Fan C. Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. Chem Sci 2016; 7:1200-1204. [PMID: 29910875 PMCID: PMC5975834 DOI: 10.1039/c5sc03705k] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
Recognition of the fundamental importance of allosteric regulation in biology dates back to not long after its discovery in the 1960s. Our ability to rationally engineer this potentially useful property into normally non-allosteric catalysts, however, remains limited. In response we report a DNA nanotechnology-enabled approach for introducing allostery into catalytic nucleic acids. Specifically, we have grafted one or two copies of a peroxidase-like DNAzyme, hemin-bound G-quadruplex (hemin-G), onto a DNA tetrahedral nanostructure in such a manner as to cause them to interact, modulating their catalytic activity. We achieve allosteric regulation of these catalysts by incorporating dynamically responsive oligonucleotides that respond to specific "effector" molecules (complementary oligonucleotides or small molecules), altering the spacing between the catalytic sites and thus regulating their activity. This designable approach thus enables subtle allosteric modulation in DNAzymes that is potentially of use for nanomedicine and nanomachines.
Collapse
Affiliation(s)
- Xiuhai Mao
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
| | - Anna J Simon
- Department of Chemistry and Biomolecular Science and Engineering Program , University of California , Santa Barbara , California 93106 , USA
| | - Hao Pei
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
| | - Jiye Shi
- Kellogg College , University of Oxford , Oxford , OX2 6PN , UK
- UCB Pharma , 208 Bath Road, Slough , SL1 3WE , UK .
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
| | - Qing Huang
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
| | - Kevin W Plaxco
- Department of Chemistry and Biomolecular Science and Engineering Program , University of California , Santa Barbara , California 93106 , USA
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201200 , China
| |
Collapse
|
22
|
Panagiotidis C, Kath-Schorr S, von Kiedrowski G. Flexibility of C3h -Symmetrical Linkers in Tris-oligonucleotide-Based Tetrahedral Scaffolds. Chembiochem 2015; 17:254-9. [PMID: 26593127 DOI: 10.1002/cbic.201500436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 01/04/2023]
Abstract
Flexibility of tris-oligonucleotides is determined by the length of their connecting hydrocarbon chains. Tris-oligonucleotides are branched DNA building blocks with three oligonucleotide arms attached to a C3h -symmetrical linker core at these chains. Four tris-oligonucleotides hybridise into a tetrahedral nanocage by sequence-determined self-assembly. The influence of methylene, ethylene and propylene chains was studied by synthesising sets of tris-oligonucleotides and analysing the relative stability of the hybridisation products against digestion by mung bean nuclease by using gel electrophoresis. Linkers with ethylene chains showed sufficient flexibility, whereas methylene-chain linkers were too rigid. Tris-oligonucleotides based on the latter still formed tetrahedral scaffolds in intermixing experiments with linkers of higher flexibility. Thus, a new generation of versatile isocyanurate-based linkers was established.
Collapse
Affiliation(s)
- Christos Panagiotidis
- Lehrstuhl für Organische Chemie I, Bioorganische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| | - Stephanie Kath-Schorr
- LIMES Institute, Chemical Biology and Medicinal Chemistry Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Günter von Kiedrowski
- Lehrstuhl für Organische Chemie I, Bioorganische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|
23
|
Affiliation(s)
- Yuhe R. Yang
- Center for Molecular Design
and Biomimetics, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Yan Liu
- Center for Molecular Design
and Biomimetics, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- Center for Molecular Design
and Biomimetics, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
24
|
Wang P, Xia Z, Yan J, Liu X, Yao G, Pei H, Zuo X, Sun G, He D. A study of pH-dependence of shrink and stretch of tetrahedral DNA nanostructures. NANOSCALE 2015; 7:6467-6470. [PMID: 25800501 DOI: 10.1039/c5nr00757g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We monitored the shrink and stretch of the tetrahedral DNA nanostructure (TDN) and the i-motif connected TDN structure at pH 8.5 and pH 4.5, and we found that not only the i-motif can change its structure when the pH changes, but also the TDN and the DNA double helix change their structures when the pH changes.
Collapse
Affiliation(s)
- Ping Wang
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, China.
| | - Zhiwei Xia
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, China. and School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Yan
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, China.
| | - Xunwei Liu
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, Shandong 250031, China.
| | - Guangbao Yao
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Hao Pei
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xiaolei Zuo
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Gang Sun
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, Shandong 250031, China.
| | - Dannong He
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, China. and School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
25
|
Li Y, Tian C, Liu Z, Jiang W, Mao C. Structural Transformation: Assembly of an Otherwise Inaccessible DNA Nanocage. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Li Y, Tian C, Liu Z, Jiang W, Mao C. Structural Transformation: Assembly of an Otherwise Inaccessible DNA Nanocage. Angew Chem Int Ed Engl 2015; 54:5990-3. [DOI: 10.1002/anie.201500755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 11/10/2022]
|
27
|
Tintoré M, Eritja R, Fábrega C. DNA Nanoarchitectures: Steps towards Biological Applications. Chembiochem 2014; 15:1374-90. [DOI: 10.1002/cbic.201402014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 12/26/2022]
|
28
|
Flory JD, Simmons CR, Lin S, Johnson T, Andreoni A, Zook J, Ghirlanda G, Liu Y, Yan H, Fromme P. Low temperature assembly of functional 3D DNA-PNA-protein complexes. J Am Chem Soc 2014; 136:8283-95. [PMID: 24871902 DOI: 10.1021/ja501228c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteins have evolved to carry out nearly all the work required of living organisms within complex inter- and intracellular environments. However, systematically investigating the range of interactions experienced by a protein that influence its function remains challenging. DNA nanostructures are emerging as a convenient method to arrange a broad range of guest molecules. However, flexible methods are needed for arranging proteins in more biologically relevant 3D geometries under mild conditions that preserve protein function. Here we demonstrate how peptide nucleic acid (PNA) can be used to control the assembly of cytochrome c (12.5 kDa, pI 10.5) and azurin (13.9 kDa, pI 5.7) proteins into separate 3D DNA nanocages, in a process that maintains protein function. Toehold-mediated DNA strand displacement is introduced as a method to purify PNA-protein conjugates. The PNA-proteins were assembled within 2 min at room temperature and within 4 min at 11 °C, and hybridize with even greater efficiency than PNA conjugated to a short peptide. Gel electrophoresis and steady state and time-resolved fluorescence spectroscopy were used to investigate the effect of protein surface charge on its interaction with the negatively charged DNA nanocage. These data were used to generate a model of the DNA-PNA-protein complexes that show the negatively charged azurin protein repelled away from the DNA nanocage while the positively charged cytochrome c protein remains within and closely interacts with the DNA nanocage. When conjugated to PNA and incorporated into the DNA nanocage, the cytochrome c secondary structure and catalytic activity were maintained, and its redox potential was reduced modestly by 20 mV possibly due to neutralization of some positive surface charges. This work demonstrates a flexible new approach for using 3D nucleic acid (PNA-DNA) nanostructures to control the assembly of functional proteins, and facilitates further investigation of protein interactions as well as engineer more elaborate 3D protein complexes.
Collapse
Affiliation(s)
- Justin D Flory
- Department of Chemistry and Biochemistry, ‡Center for Bio-Inspired Solar Fuel Production, and §Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Flory JD, Shinde S, Lin S, Liu Y, Yan H, Ghirlanda G, Fromme P. PNA-peptide assembly in a 3D DNA nanocage at room temperature. J Am Chem Soc 2013; 135:6985-93. [PMID: 23521013 DOI: 10.1021/ja400762c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins and peptides fold into dynamic structures that access a broad functional landscape; however, designing artificial polypeptide systems is still a great challenge. Conversely, DNA engineering is now routinely used to build a wide variety of 2D and 3D nanostructures from hybridization based rules, and their functional diversity can be significantly expanded through site specific incorporation of the appropriate guest molecules. Here we demonstrate a new approach to rationally design 3D nucleic acid-amino acid complexes using peptide nucleic acid (PNA) to assemble peptides inside a 3D DNA nanocage. The PNA-peptides were found to bind to the preassembled DNA nanocage in 5-10 min at room temperature, and assembly could be performed in a stepwise fashion. Biophysical characterization of the DNA-PNA-peptide complex was performed using gel electrophoresis as well as steady state and time-resolved fluorescence spectroscopy. Based on these results we have developed a model for the arrangement of the PNA-peptides inside the DNA nanocage. This work demonstrates a flexible new approach to leverage rationally designed nucleic acid (DNA-PNA) nanoscaffolds to guide polypeptide engineering.
Collapse
Affiliation(s)
- Justin D Flory
- Center for Bio-Inspired Solar Fuel Production, Arizona State University, Tempe, Arizona 85287, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Zahid M, Kim B, Hussain R, Amin R, Park SH. DNA nanotechnology: a future perspective. NANOSCALE RESEARCH LETTERS 2013; 8:119. [PMID: 23497147 PMCID: PMC3599551 DOI: 10.1186/1556-276x-8-119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/21/2013] [Indexed: 05/05/2023]
Abstract
In addition to its genetic function, DNA is one of the most distinct and smart self-assembling nanomaterials. DNA nanotechnology exploits the predictable self-assembly of DNA oligonucleotides to design and assemble innovative and highly discrete nanostructures. Highly ordered DNA motifs are capable of providing an ultra-fine framework for the next generation of nanofabrications. The majority of these applications are based upon the complementarity of DNA base pairing: adenine with thymine, and guanine with cytosine. DNA provides an intelligent route for the creation of nanoarchitectures with programmable and predictable patterns. DNA strands twist along one helix for a number of bases before switching to the other helix by passing through a crossover junction. The association of two crossovers keeps the helices parallel and holds them tightly together, allowing the assembly of bigger structures. Because of the DNA molecule's unique and novel characteristics, it can easily be applied in a vast variety of multidisciplinary research areas like biomedicine, computer science, nano/optoelectronics, and bionanotechnology.
Collapse
Affiliation(s)
- Muniza Zahid
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Byeonghoon Kim
- Department of Physics & SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, South Korea
| | - Rafaqat Hussain
- Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta'zim, Malaysia
| | - Rashid Amin
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Sung Ha Park
- Department of Physics & SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, South Korea
| |
Collapse
|
32
|
Crawford R, Erben CM, Periz J, Hall LM, Brown T, Turberfield AJ, Kapanidis AN. Non-covalent Single Transcription Factor Encapsulation Inside a DNA Cage. Angew Chem Int Ed Engl 2013; 52:2284-8. [DOI: 10.1002/anie.201207914] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/27/2012] [Indexed: 12/20/2022]
|
33
|
Crawford R, Erben CM, Periz J, Hall LM, Brown T, Turberfield AJ, Kapanidis AN. Non-covalent Single Transcription Factor Encapsulation Inside a DNA Cage. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Ackermann D, Jester SS, Famulok M. Konstruktionsprinzip für DNA-Rotaxane mit mechanisch versteifter PX100-Achse. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Ackermann D, Jester SS, Famulok M. Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. Angew Chem Int Ed Engl 2012; 51:6771-5. [PMID: 22653874 DOI: 10.1002/anie.201202816] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Damian Ackermann
- Universität Bonn, LIMES Institut, Chemical Biology & Med. Chem. Unit c/o Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | |
Collapse
|
36
|
Carneiro KMM, Lo PK, Sleiman HF. Self-Assembly of Nucleic Acids. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Stulz E. DNA architectonics: towards the next generation of bio-inspired materials. Chemistry 2012; 18:4456-69. [PMID: 22407800 DOI: 10.1002/chem.201102908] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Indexed: 12/13/2022]
Abstract
The use of DNA in nanobiotechnology has advanced to a stage at which almost any two or three dimensional architecture can be designed with high precision. The choice of the DNA sequences is essential for successful self-assembly, and opens new ways of making nanosized monomolecular assemblies with predictable structure and size. The inclusion of designer nucleoside analogues further adds functionality with addressable groups, which have an influence on the function of the DNA nano-objects. This article highlights the recent achievements in this emerging field and gives an outlook on future perspectives and applications.
Collapse
Affiliation(s)
- Eugen Stulz
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| |
Collapse
|
38
|
Zhang C, Tian C, Guo F, Liu Z, Jiang W, Mao C. DNA-Directed Three-Dimensional Protein Organization. Angew Chem Int Ed Engl 2012; 51:3382-5. [DOI: 10.1002/anie.201108710] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Indexed: 11/12/2022]
|
39
|
Zhang C, Tian C, Guo F, Liu Z, Jiang W, Mao C. DNA-Directed Three-Dimensional Protein Organization. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108710] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
|
41
|
|
42
|
|
43
|
Singh A, Tolev M, Meng M, Klenin K, Plietzsch O, Schilling CI, Muller T, Nieger M, Bräse S, Wenzel W, Richert C. Branched DNA that forms a solid at 95 °C. Angew Chem Int Ed Engl 2011; 50:3227-31. [PMID: 21374767 DOI: 10.1002/anie.201006992] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/18/2010] [Indexed: 11/08/2022]
Affiliation(s)
- Arunoday Singh
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Saha S, Bhatia D, Krishnan Y. pH-Toggled DNA architectures: reversible assembly of three-way junctions into extended 1D architectures through A-motif formation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1288-1292. [PMID: 20486230 DOI: 10.1002/smll.201000330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Sonali Saha
- National Centre for Biological Sciences, TIFR GKVK-UAS, Bellary Road, Bangalore 560065, India
| | | | | |
Collapse
|
45
|
Niemeyer CM. Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. Angew Chem Int Ed Engl 2010; 49:1200-16. [PMID: 20091721 DOI: 10.1002/anie.200904930] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conjugation with artificial nucleic acids allows proteins to be modified with a synthetically accessible, robust tag. This attachment is addressable in a highly specific manner by means of molecular recognition events, such as Watson-Crick hybridization. Such DNA-protein conjugates, with their combined properties, have a broad range of applications, such as in high-performance biomedical diagnostic assays, fundamental research on molecular recognition, and the synthesis of DNA nanostructures. This Review surveys current approaches to generate DNA-protein conjugates as well as recent advances in their applications. For example, DNA-protein conjugates have been assembled into model systems for the investigation of catalytic cascade reactions and light-harvesting devices. Such hybrid conjugates are also used for the biofunctionalization of planar surfaces for micro- and nanoarrays, and for decorating inorganic nanoparticles to enable applications in sensing, materials science, and catalysis.
Collapse
Affiliation(s)
- Christof M Niemeyer
- Technische Universität Dortmund, Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Strasse 6, 44227 Dortmund, Germany.
| |
Collapse
|
46
|
Abstract
Due to its self-assembling nature, DNA is undoubtedly an excellent molecule for the creation of various multidimensional nanostructures and the placement of functional molecules and materials. DNA molecules behave according to the programs of their sequences. Mixtures of numbers of DNA molecules can be placed precisely and organized into single structures to form nanoarchitectures. Once the appropriate sequences for the target nanostructure are established, the predesigned structure can be built up by self-assembly of the designed DNA strands. DNA nanotechnology has already reached the stage at which the organization of desired functional molecules and nanomaterials can be programmed on a defined DNA scaffold. In this review, we will focus on DNA nanotechnology and describe the potential of synthetic chemistry to contribute to the further development of DNA nanomaterials.
Collapse
Affiliation(s)
- Masayuki Endo
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
47
|
Niemeyer C. Halbsynthetische DNA-Protein-Konjugate für Biosensorik und Nanofabrikation. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904930] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
He Y, Su M, Fang PA, Zhang C, Ribbe AE, Jiang W, Mao C. On the Chirality of Self-Assembled DNA Octahedra. Angew Chem Int Ed Engl 2009; 49:748-51. [PMID: 20017168 DOI: 10.1002/anie.200904513] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yu He
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
He Y, Su M, Fang PA, Zhang C, Ribbe A, Jiang W, Mao C. On the Chirality of Self-Assembled DNA Octahedra. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904513] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Goodman RP, Erben CM, Malo J, Ho WM, McKee ML, Kapanidis AN, Turberfield AJ. A facile method for reversibly linking a recombinant protein to DNA. Chembiochem 2009; 10:1551-7. [PMID: 19449345 DOI: 10.1002/cbic.200900165] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present a facile method for linking recombinant proteins to DNA. It is based on the nickel-mediated interaction between a hexahistidine tag (His(6)-tag) and DNA functionalized with three nitrilotriacetic acid (NTA) groups. The resulting DNA-protein linkage is site-specific. It can be broken quickly and controllably by the addition of a chelating agent that binds nickel. We have used this new linker to bind proteins to a variety of DNA motifs commonly used in the fabrication of nanostructures by DNA self-assembly.
Collapse
Affiliation(s)
- Russell P Goodman
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX13PU, UK
| | | | | | | | | | | | | |
Collapse
|