1
|
Zhan L, Dai C, Zhang G, Zhu J, Zhang S, Wang H, Zeng Y, Tung C, Wu L, Cong H. A Conjugated Figure‐of‐Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lijie Zhan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Engineering Research Center for Nanomaterials Henan University Kaifeng 475004 China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
2
|
Zhan L, Dai C, Zhang G, Zhu J, Zhang S, Wang H, Zeng Y, Tung CH, Wu LZ, Cong H. A Conjugated Figure-of-Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angew Chem Int Ed Engl 2021; 61:e202113334. [PMID: 34817926 DOI: 10.1002/anie.202113334] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/09/2021] [Indexed: 11/06/2022]
Abstract
A fully conjugated figure-of-eight nanohoop is presented with facile synthesis. The molecule's lemniscular skeleton features the combination of two strained oligoparaphenylene loops and a flexible cyclooctatetrathiophene core. Its rigid yet guest-adaptive cavities enable the formation of the peanut-like 1:2 host-guest complexes with C60 or C70 , which have been confirmed by X-ray crystallography and characterized in solution. Further computational studies suggest notable geometric variations and non-covalent interactions of the cavities upon binding with different fullerenes, as well as overall conjugation comparable to cycloparaphenylenes.
Collapse
Affiliation(s)
- Lijie Zhan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hua Wang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
3
|
Zhang X, Shi H, Zhuang G, Wang S, Wang J, Yang S, Shao X, Du P. A Highly Strained All‐Phenylene Conjoined Bismacrocycle. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyu Zhang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Hong Shi
- Department of Chemical Physics CAS Key Laboratory of Urban Pollutant Conversion Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Guilin Zhuang
- College of Chemical Engineering Zhejiang University of Technology 18 Chaowang Road Hangzhou Zhejiang Province 310032 China
| | - Shengda Wang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Jinyi Wang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Xiang Shao
- Department of Chemical Physics CAS Key Laboratory of Urban Pollutant Conversion Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Hefei Anhui Province 230026 China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering,iChEM University of Science and Technology of China Hefei Anhui Province 230026 China
| |
Collapse
|
4
|
Zhang X, Shi H, Zhuang G, Wang S, Wang J, Yang S, Shao X, Du P. A Highly Strained All-Phenylene Conjoined Bismacrocycle. Angew Chem Int Ed Engl 2021; 60:17368-17372. [PMID: 33945657 DOI: 10.1002/anie.202104669] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Indexed: 11/10/2022]
Abstract
Herein, we report the precise synthesis of a 3D highly strained all-phenylene bismacrocycle, termed conjoined (1,4)[10]cycloparaphenylenophane (SCPP[10]). This structure consists of a twisted benzene ring which is bridged twice by phenylene units anchored in two para-positions. The conjoined structure of SCPP[10] was confirmed in real space at the atomic scale by scanning tunneling microscopy. Theoretical calculations indicate that this bismacrocycle has a very high strain energy of 110.59 kcal mol-1 and the largest interphenylene torsion angle of 46.07° caused by multiple repulsive interactions. Furthermore, a 1:2 host-guest complex of SCPP[10] and [6,6]-phenyl-C61 -butyric acid methyl ester was investigated, which represents the first peanut-shaped 1:2 host-guest complex based on bismacrocycles.
Collapse
Affiliation(s)
- Xinyu Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Hong Shi
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang Province, 310032, China
| | - Shengda Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jinyi Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Xiang Shao
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering,iChEM, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
5
|
Leyva-Parra L, Diego L, Yañez O, Inostroza D, Barroso J, Vásquez-Espinal A, Merino G, Tiznado W. Planar Hexacoordinate Carbons: Half Covalent, Half Ionic. Angew Chem Int Ed Engl 2021; 60:8700-8704. [PMID: 33527696 DOI: 10.1002/anie.202100940] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 11/06/2022]
Abstract
Herein, the first global minima containing a planar hexacoordinate carbon (phC) atom are reported. The fifteen structures belong to the CE3 M3 + (E=S-Te and M=Li-Cs) series and satisfy both geometric and electronic criteria to be considered as a true phC. The design strategy consisted of replacing oxygen in the D3h CO3 Li3 + structure with heavy and less electronegative chalcogens, inducing a negative charge on the C atom and an attractive electrostatic interaction between C and the alkali-metal cations. The chemical bonding analyses indicate that carbon is covalently bonded to three chalcogens and ionically connected to the three alkali metals.
Collapse
Affiliation(s)
- Luis Leyva-Parra
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| | - Luz Diego
- Escuela Profesional de Química, Facultad de Ciencias Naturales, Universidad Nacional Federico Villarreal, Jr. Río Chepén 290, El Agustino, Lima, Perú
| | - Osvaldo Yañez
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile.,Center of New Drugs for Hypertension (CENDHY), Santiago, Chile
| | - Diego Inostroza
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| | - Jorge Barroso
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km. 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex, Mérida, Yuc., México
| | - Alejandro Vásquez-Espinal
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km. 6 Antigua carretera a Progreso, Apdo. Postal 73, Cordemex, Mérida, Yuc., México
| | - William Tiznado
- Computational and Theoretical Chemistry Group, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 498, Santiago, Chile
| |
Collapse
|
6
|
Leyva‐Parra L, Diego L, Yañez O, Inostroza D, Barroso J, Vásquez‐Espinal A, Merino G, Tiznado W. Planar Hexacoordinate Carbons: Half Covalent, Half Ionic. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Luis Leyva‐Parra
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| | - Luz Diego
- Escuela Profesional de Química Facultad de Ciencias Naturales Universidad Nacional Federico Villarreal Jr. Río Chepén 290, El Agustino Lima Perú
| | - Osvaldo Yañez
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
- Center of New Drugs for Hypertension (CENDHY) Santiago Chile
| | - Diego Inostroza
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| | - Jorge Barroso
- Departamento de Física Aplicada Centro de Investigación y de Estudios Avanzados Unidad Mérida km. 6 Antigua carretera a Progreso Apdo. Postal 73, Cordemex Mérida Yuc. México
| | - Alejandro Vásquez‐Espinal
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| | - Gabriel Merino
- Departamento de Física Aplicada Centro de Investigación y de Estudios Avanzados Unidad Mérida km. 6 Antigua carretera a Progreso Apdo. Postal 73, Cordemex Mérida Yuc. México
| | - William Tiznado
- Computational and Theoretical Chemistry Group Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andres Bello República 498 Santiago Chile
| |
Collapse
|
7
|
Kumar R, Aggarwal H, Srivastava A. Of Twists and Curves: Electronics, Photophysics, and Upcoming Applications of Non-Planar Conjugated Organic Molecules. Chemistry 2020; 26:10653-10675. [PMID: 32118325 DOI: 10.1002/chem.201905071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/02/2020] [Indexed: 01/02/2023]
Abstract
Non-planar conjugated organic molecules (NPCOMs) contain π-conjugation across their length and also exhibit asymmetry in their conformation. In other words, certain molecular fragments in NPCOMs are either twisted or curved out of planarity. This conformational asymmetry in NPCOMs leads to non-uniform charge-distribution across the molecule, with important photophysical and electronic consequences such as altered thermodynamic stability, chemical reactivity, as well as materials properties. Majorly, NPCOMs can be classified as having either Fused or Rotatable architectures. NPCOMs have been the focus of significant scientific attention in the recent past due to their exciting photophysical behavior that includes intramolecular charge-transfer (ICT), thermally activated delayed fluorescence (TADF) and long-lived charge-separated states. In addition, they also have many useful materials characteristics such as biradical character, semi-conductivity, dynamic conformations, and mechanochromism. As a result, rational design of NPCOMs and mapping their structure-property correlations has become imperative. Researchers have executed conformational changes in NPCOMs through a variety of external stimuli such as pH, temperature, anions-cations, solvent, electric potential, and mechanical force in order to tailor their photophysical, optoelectronic and magnetic properties. Converging to these points, this review highlights the lucrative electronic features, photophysical traits and upcoming applications of NPCOMs by a selective survey of the recent scientific literature.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| | - Himanshu Aggarwal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISER Bhopal), Bhauri, Bhopal Bypass Road, Bhopal, 462066, India
| |
Collapse
|
8
|
Zhao Y, Xie Q, Sun T, Wu J, Zhu J. Predicting an Antiaromatic Benzene Ring in the Ground State Caused by Hyperconjugation. Chem Asian J 2019; 14:4309-4314. [DOI: 10.1002/asia.201901261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/15/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChEM)Fujian Provincial Key Laboratory of Theoretical and Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Qiong Xie
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChEM)Fujian Provincial Key Laboratory of Theoretical and Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Tingting Sun
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChEM)Fujian Provincial Key Laboratory of Theoretical and Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jiashun Wu
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChEM)Fujian Provincial Key Laboratory of Theoretical and Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChEM)Fujian Provincial Key Laboratory of Theoretical and Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
9
|
Rosenthal U. A Ghost Trapped: Realization of the 1‐Titanacyclobuta‐2,3‐diene as the First Four‐Membered Group 4 Metallacycloallene. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- U. Rosenthal
- Leibniz Institute for Catalysis at the University of Rostock Albert‐Einstein‐Str. 29A 18059 Rostock Germany
| |
Collapse
|
10
|
Iwamoto T, Abe T, Sugimoto K, Hashizume D, Matsui H, Kishi R, Nakano M, Ishida S. A Tetrasilicon Analogue of Bicyclo[1.1.0]but‐1(3)‐ene Containing a Si=Si Double Bond with an Inverted Geometry. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Takeaki Iwamoto
- Department of ChemistryGraduate School of ScienceTohoku University Aoba-ku Sendai 980-8578 Japan
| | - Takashi Abe
- Department of ChemistryGraduate School of ScienceTohoku University Aoba-ku Sendai 980-8578 Japan
| | - Kunihisa Sugimoto
- Japan Synchrotron Radiation Research Institute (JASRI) Sayo-gun Hyogo 679-5148 Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hiroshi Matsui
- Department of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| | - Ryohei Kishi
- Department of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| | - Masayoshi Nakano
- Department of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| | - Shintaro Ishida
- Department of ChemistryGraduate School of ScienceTohoku University Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
11
|
Iwamoto T, Abe T, Sugimoto K, Hashizume D, Matsui H, Kishi R, Nakano M, Ishida S. A Tetrasilicon Analogue of Bicyclo[1.1.0]but‐1(3)‐ene Containing a Si=Si Double Bond with an Inverted Geometry. Angew Chem Int Ed Engl 2019; 58:4371-4375. [DOI: 10.1002/anie.201900824] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Takeaki Iwamoto
- Department of ChemistryGraduate School of ScienceTohoku University Aoba-ku Sendai 980-8578 Japan
| | - Takashi Abe
- Department of ChemistryGraduate School of ScienceTohoku University Aoba-ku Sendai 980-8578 Japan
| | - Kunihisa Sugimoto
- Japan Synchrotron Radiation Research Institute (JASRI) Sayo-gun Hyogo 679-5148 Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hiroshi Matsui
- Department of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| | - Ryohei Kishi
- Department of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| | - Masayoshi Nakano
- Department of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| | - Shintaro Ishida
- Department of ChemistryGraduate School of ScienceTohoku University Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
12
|
Locke GM, Bernhard SSR, Senge MO. Nonconjugated Hydrocarbons as Rigid-Linear Motifs: Isosteres for Material Sciences and Bioorganic and Medicinal Chemistry. Chemistry 2019; 25:4590-4647. [PMID: 30387906 DOI: 10.1002/chem.201804225] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/20/2018] [Indexed: 01/02/2023]
Abstract
Nonconjugated hydrocarbons, like bicyclo[1.1.1]pentane, bicyclo[2.2.2]octane, triptycene, and cubane are a unique class of rigid linkers. Due to their similarity in size and shape they are useful mimics of classic benzene moieties in drugs, so-called bioisosteres. Moreover, they also fulfill an important role in material sciences as linear linkers, in order to arrange various functionalities in a defined spatial manner. In this Review article, recent developments and usages of these special, rectilinear systems are discussed. Furthermore, we focus on covalently linked, nonconjugated linear arrangements and discuss the physical and chemical properties and differences of individual linkers, as well as their application in material and medicinal sciences.
Collapse
Affiliation(s)
- Gemma M Locke
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Stefan S R Bernhard
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| |
Collapse
|
13
|
Liu C, Szostak M. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N−C Amide Bond Activation. Chemistry 2017; 23:7157-7173. [DOI: 10.1002/chem.201605012] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Chengwei Liu
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| | - Michal Szostak
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
14
|
Hu F, Lalancette R, Szostak M. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N−C Cleavage. Angew Chem Int Ed Engl 2016; 55:5062-6. [DOI: 10.1002/anie.201600919] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Feng Hu
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| | - Roger Lalancette
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| | - Michal Szostak
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
15
|
Hu F, Lalancette R, Szostak M. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N−C Cleavage. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Feng Hu
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| | - Roger Lalancette
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| | - Michal Szostak
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
16
|
|
17
|
Affiliation(s)
- Henning Hopf
- Institute of Organic Chemistry; Technical University Braunschweig; Hagenring 30 D-38106 Braunschweig Germany
| |
Collapse
|
18
|
Boudhar A, Charpenay M, Blond G, Suffert J. Fenestranes in Synthesis: Unique and Highly Inspiring Scaffolds. Angew Chem Int Ed Engl 2013; 52:12786-98. [DOI: 10.1002/anie.201304555] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/18/2013] [Indexed: 11/10/2022]
|
19
|
Boudhar A, Charpenay M, Blond G, Suffert J. Fenestrane in der Synthese: einzigartige und inspirierende Grundgerüste. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304555] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
What Is the Maximum Coordination Number in a Planar Structure? Angew Chem Int Ed Engl 2012; 51:4275-6. [DOI: 10.1002/anie.201201166] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Indexed: 11/07/2022]
|
21
|
Heine T, Merino G. Was ist die höchste Koordinationszahl in einer ebenen Struktur? Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Murray C, Gildea B, Müller-Bunz H, Harding CJ, Morgan GG. Co-crystallisation of competing structural modes in geometrically constrained Jahn–Teller manganese(iii) complexes. Dalton Trans 2012; 41:14487-9. [DOI: 10.1039/c2dt31742g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Ding N, Hor TSA. Syntheses and Structures of Ruthenium(II) N,S-Heterocyclic Carbene Diphosphine Complexes and their Catalytic Activity towards Transfer Hydrogenation. Chem Asian J 2011; 6:1485-91. [DOI: 10.1002/asia.201000930] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Indexed: 11/08/2022]
Affiliation(s)
- Nini Ding
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | | |
Collapse
|
24
|
Shaffer CJ, Schröder D. The Demise and Revival of Diazirinone. Angew Chem Int Ed Engl 2011; 50:2677-8. [DOI: 10.1002/anie.201007364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Indexed: 11/12/2022]
Affiliation(s)
- Christopher J. Shaffer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námĕstí 2, 16610 Prague 6 (Czech Republic)
| | - Detlef Schröder
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námĕstí 2, 16610 Prague 6 (Czech Republic)
| |
Collapse
|
25
|
Affiliation(s)
- Christopher J. Shaffer
- Institut für Organische Chemie und Biochemie, Akademie der Wissenschaften der Tschechischen Republik, Flemingovo námĕstí 2, 16610 Prag 6 (Tschechien)
| | - Detlef Schröder
- Institut für Organische Chemie und Biochemie, Akademie der Wissenschaften der Tschechischen Republik, Flemingovo námĕstí 2, 16610 Prag 6 (Tschechien)
| |
Collapse
|
26
|
Schneider TF, Werz DB. Caged Chalcogens: Theoretical Studies on a Tetracoordinated Oxonium Dication and Its Higher Homologues. Org Lett 2010; 12:772-5. [DOI: 10.1021/ol902904z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tobias F. Schneider
- Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany
| | - Daniel B. Werz
- Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany
| |
Collapse
|
27
|
Shaik S, Chen Z, Wu W, Stanger A, Danovich D, Hiberty PC. An Excursion from Normal to Inverted CC Bonds Shows a Clear Demarcation between Covalent and Charge-Shift CC Bonds. Chemphyschem 2009; 10:2658-69. [DOI: 10.1002/cphc.200900633] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Physikalische organische Chemie: H. Schwarz geehrt / Kohlenhydrate: P. Seeberger ausgezeichnet / Organische Chemie: Medaille für H. Hopf. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200806019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Physical Organic Chemistry: H. Schwarz Honored / Carbohydrates: P. Seeberger Awarded / Organic Chemistry: Medal for H. Hopf. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/anie.200806019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Kim H, Nguyen Y, Lough A, Chin J. Stereospecific Diaza-Cope Rearrangement Driven by Steric Strain. Angew Chem Int Ed Engl 2008; 47:8678-81. [DOI: 10.1002/anie.200801974] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Kim H, Nguyen Y, Lough A, Chin J. Stereospecific Diaza-Cope Rearrangement Driven by Steric Strain. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|