Swartjes A, White PB, Bruekers JPJ, Elemans JAAW, Nolte RJM. Paramagnetic relaxation enhancement NMR as a tool to probe guest binding and exchange in metallohosts.
Nat Commun 2022;
13:1846. [PMID:
35388004 PMCID:
PMC8986849 DOI:
10.1038/s41467-022-29406-1]
[Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 11/11/2022] Open
Abstract
Paramagnetic metallohost systems can bind guest molecules and find application as biomimetic catalysts. Due to the presence of the paramagnetic metal center, rigorous characterization of these systems by NMR spectroscopy can be very difficult. We report here that metallohost-guest systems can be studied by using the paramagnetic relaxation enhancement (PRE) effect. Manganese(III) porphyrin cage compounds are shown through their PRE to thread and bind viologen guests, including a polymeric one. The binding constants and dethreading activation parameters are lower than those of the metal-free porphyrin cage compounds, which is proposed to be a result of charge repulsion of the trivalent metal center and dicationic viologen guest. The threading rate of the manganese(III) porphyrin cage onto the polymer is more than 10 times faster than that of the non-metallated one, which is ascribed to initial binding of the cage to the polymer chain prior to threading, and to an entron effect.
Paramagnetic metallohost systems are difficult to characterize. Here the authors report that the paramagnetic relaxation enhancement effect can be used to prove by nuclear magnetic resonance experiments that Mn(III) porphyrin cage compounds can bind and thread low molecular weight and polymeric guests.
Collapse