1
|
Progress of albumin-polymer conjugates as efficient drug carriers. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Albumin is a protein that has garnered wide attention in nanoparticle-based drug delivery of cancer therapeutics due to its natural abundance and unique cancer-targeting ability. The propensity of albumin to naturally accumulate in tumours, further augmented by the incorporation of targeting ligands, has made the field of albumin-polymer conjugate development a much pursued one. Polymerization techniques such as RAFT and ATRP have paved the path to incorporate various polymers in the design of albumin-polymer hybrids, indicating the advancement of the field since the first instance of PEGylated albumin in 1977. The synergistic combination of albumin and polymer endows manifold features to these macromolecular hybrids to evolve as next generation therapeutics. The current review is successive to our previously published review on drug delivery vehicles based on albumin-polymer conjugates and aims to provide an update on the progress of albumin-polymer conjugates. This review also highlights the alternative of exploring albumin-polymer conjugates formed via supramolecular, non-covalent interactions. Albumin-based supramolecular polymer systems provide a versatile platform for functionalization, thereby, holding great potential in enhancing cytotoxicity and controlled delivery of therapeutic agents.
Collapse
|
2
|
Liu X, Gao W. Precision Conjugation: An Emerging Tool for Generating Protein–Polymer Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinyu Liu
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department Peking University Beijing 100191 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department Peking University Beijing 100191 P. R. China
| |
Collapse
|
3
|
Liu X, Gao W. Precision Conjugation: An Emerging Tool for Generating Protein–Polymer Conjugates. Angew Chem Int Ed Engl 2021; 60:11024-11035. [PMID: 32437042 DOI: 10.1002/anie.202003708] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/20/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Xinyu Liu
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department Peking University Beijing 100191 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department Peking University Beijing 100191 P. R. China
| |
Collapse
|
4
|
Liu X, Sun J, Gao W. Site-selective protein modification with polymers for advanced biomedical applications. Biomaterials 2018; 178:413-434. [DOI: 10.1016/j.biomaterials.2018.04.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
|
5
|
Jiang L, Bonde JS, Ye L. Temperature and pH Controlled Self-Assembly of a Protein-Polymer Biohybrid. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201700597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lingdong Jiang
- Division of Pure and Applied Biochemistry; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| | - Johan Svensson Bonde
- Division of Pure and Applied Biochemistry; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry; Department of Chemistry; Lund University; Box 124 221 00 Lund Sweden
| |
Collapse
|
6
|
Khan AK, Gudlur S, de Hoog HPM, Siti W, Liedberg B, Nallani M. Controlled Supramolecular Self-Assembly of Super-charged β-Lactoglobulin A-PEG Conjugates into Nanocapsules. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Amit Kumar Khan
- NTU Institute for Health Technologies; Interdisciplinary Graduate School; Nanyang Technological University; Singapore 639798 Singapore
- Center for Biomimetic Sensor Science; School of Materials Science and Engineering; Nanyang Technological University; Singapore 637553 Singapore
| | - Sushanth Gudlur
- Center for Biomimetic Sensor Science; School of Materials Science and Engineering; Nanyang Technological University; Singapore 637553 Singapore
| | | | - Winna Siti
- Center for Biomimetic Sensor Science; School of Materials Science and Engineering; Nanyang Technological University; Singapore 637553 Singapore
| | - Bo Liedberg
- Center for Biomimetic Sensor Science; School of Materials Science and Engineering; Nanyang Technological University; Singapore 637553 Singapore
| | - Madhavan Nallani
- Center for Biomimetic Sensor Science; School of Materials Science and Engineering; Nanyang Technological University; Singapore 637553 Singapore
- ACM Biolabs; Nanyang Dr, Innovation Centre Block 2 Singapore 637723 Singapore
| |
Collapse
|
7
|
Controlled Supramolecular Self-Assembly of Super-charged β-Lactoglobulin A-PEG Conjugates into Nanocapsules. Angew Chem Int Ed Engl 2017; 56:11754-11758. [DOI: 10.1002/anie.201704298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/10/2017] [Indexed: 01/09/2023]
|
8
|
Ma C, Liu X, Wu G, Zhou P, Zhou Y, Wang L, Huang X. Efficient Way to Generate Protein-Based Nanoparticles by in-Situ Photoinitiated Polymerization-Induced Self-Assembly. ACS Macro Lett 2017; 6:689-694. [PMID: 35650871 DOI: 10.1021/acsmacrolett.7b00422] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein-based nanoparticles with tailored properties by using different functional proteins as building blocks have many actual and potential applications in biomedicine, biotechnology, and nanotechnology. In this study, we demonstrated a facile and efficient way to synthesize protein-based nanoparticles by taking advantage of photoinitiated reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly by using multi-RAFT modified bovine serum albumin (BSA) as a macro-RAFT agent. The growth of the PHPMA chains results in the increase of the hydrophobicity of the star BSA-PHPMA conjugates, and when reaching the critical aggregation concentration in aqueous solution, they will aggregate into nanoparticles via the hydrophobic interaction of PHPMA. The generated nanoparticles also showed excellent encapsulation ability toward both hydrophobic and hydrophilic components, and as a proof of concept, after loading cancer drug DOX or biomacromolecule DNA, the protease-mediated release of the encapsulants was demonstrated. It is anticipated that the described method may open up new opportunities for designing a variety of protein-polymer self-assembled nanostructures tailored to specific applications.
Collapse
Affiliation(s)
- Chao Ma
- MIIT Key Laboratory of Critical
Materials Technology for New Energy Conversion and Storage, State
Key Laboratory of Urban Water Resource and Environment, School of
Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical
Materials Technology for New Energy Conversion and Storage, State
Key Laboratory of Urban Water Resource and Environment, School of
Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Guangyu Wu
- MIIT Key Laboratory of Critical
Materials Technology for New Energy Conversion and Storage, State
Key Laboratory of Urban Water Resource and Environment, School of
Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Pei Zhou
- MIIT Key Laboratory of Critical
Materials Technology for New Energy Conversion and Storage, State
Key Laboratory of Urban Water Resource and Environment, School of
Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuting Zhou
- MIIT Key Laboratory of Critical
Materials Technology for New Energy Conversion and Storage, State
Key Laboratory of Urban Water Resource and Environment, School of
Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical
Materials Technology for New Energy Conversion and Storage, State
Key Laboratory of Urban Water Resource and Environment, School of
Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical
Materials Technology for New Energy Conversion and Storage, State
Key Laboratory of Urban Water Resource and Environment, School of
Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
9
|
Fernandez-Trillo F, Grover LM, Stephenson-Brown A, Harrison P, Mendes PM. Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles. Angew Chem Int Ed Engl 2017; 56:3142-3160. [DOI: 10.1002/anie.201607825] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/12/2016] [Indexed: 12/19/2022]
Affiliation(s)
| | - Liam M. Grover
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Alex Stephenson-Brown
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Paul Harrison
- Institute of Inflammation and Ageing (IIA); University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Paula M. Mendes
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
10
|
Fernandez-Trillo F, Grover LM, Stephenson-Brown A, Harrison P, Mendes PM. Vesikel in der Natur und im Labor: die Aufklärung der biologischen Eigenschaften und die Synthese zunehmend komplexer synthetischer Vesikel. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607825] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Liam M. Grover
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| | - Alex Stephenson-Brown
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| | - Paul Harrison
- Institute of Inflammation and Ageing (IIA); University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| | - Paula M. Mendes
- School of Chemical Engineering; University of Birmingham; Edgbaston Birmingham B15 2TT Großbritannien
| |
Collapse
|
11
|
Xu G, Xu Y, Li A, Chen T, Liu J. Enzymatic bioactivity investigation of glucose oxidase modified with hydrophilic or hydrophobic polymers via in situ RAFT polymerization. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gengfang Xu
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| | - Yuanhong Xu
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| | - Aihua Li
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| | - Tao Chen
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| | - Jingquan Liu
- Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering; Institute for Graphene Applied Technology Innovation; Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory; Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province; Qingdao University; Qingdao 266071 China
| |
Collapse
|
12
|
Le Fer G, Portes D, Goudounet G, Guigner JM, Garanger E, Lecommandoux S. Design and self-assembly of PBLG-b-ELP hybrid diblock copolymers based on synthetic and elastin-like polypeptides. Org Biomol Chem 2017; 15:10095-10104. [DOI: 10.1039/c7ob01945a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and self-assembly of amphiphilic copolypeptides containing a recombinant elastin-like polypeptide block used as a macroinitiator for the ROP of γ-BLG NCA are presented.
Collapse
Affiliation(s)
- Gaëlle Le Fer
- Université de Bordeaux/Bordeaux INP
- ENSCBP
- Pessac 33607
- France
- CNRS
| | - Delphine Portes
- Université de Bordeaux/Bordeaux INP
- ENSCBP
- Pessac 33607
- France
- CNRS
| | | | - Jean-Michel Guigner
- Institut de Minéralogie et de Physique des Milieux Condensés (IMPMC)
- 75005 Paris
- France
| | | | | |
Collapse
|
13
|
Alalwiat A, Grieshaber SE, Paik BA, Kiick KL, Jia X, Wesdemiotis C. Top-down mass spectrometry of hybrid materials with hydrophobic peptide and hydrophilic or hydrophobic polymer blocks. Analyst 2016; 140:7550-64. [PMID: 26460278 DOI: 10.1039/c5an01600b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multidimensional mass spectrometry (MS) methodology is introduced for the molecular level characterization of polymer-peptide (or polymer-protein) copolymers that cannot be crystallized or chromatographically purified. It encompasses electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALDI) coupled with mass analysis, tandem mass spectrometry (MS(2)) and gas-phase separation by ion mobility mass spectrometry (IM-MS). The entire analysis is performed in the mass spectrometer ("top-down" approach) within milliseconds and with high sensitivity, as demonstrated for hybrid materials composed of hydrophobic poly(tert-butyl acrylate) (PtBA) or hydrophilic poly(acrylic acid) (PAA) blocks tethered to the hydrophobic decapeptide VPGVGVPGVG (VG2) via triazole linkages. The composition of the major products can be rapidly surveyed by MALDI-MS and MS(2). For a more comprehensive characterization, the ESI-IM-MS (and MS(2)) combination is more suitable, as it separates the hybrid materials based on their unique charges and shapes from unconjugated polymer and partially hydrolyzed products. Such separation is essential for reducing spectral congestion, deconvoluting overlapping compositions and enabling straightforward structural assignments, both for the hybrid copolymers as well as the polymer and peptide reactants. The IM dimension also permits the measurement of collision cross-sections (CCSs), which reveal molecular architecture. The MS and MS(2) spectra of the mobility separated ions conclusively showed that [PtBA-VG2]m and [PAA-VG2]m chains with the expected compositions and sequences were formed. Single and double copolymer blocks (m = 1-2) could be detected. Further, the CCSs of the hybrids, which were prepared via azide/alkyne cycloadditions, confirmed the formation of macrocyclic structures. The top-down methodology described would be particularly useful for the detection and identification of peptide/protein-polymer conjugates which are increasingly used in biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Ahlam Alalwiat
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA.
| | - Sarah E Grieshaber
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Bradford A Paik
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA.
| |
Collapse
|
14
|
Jiang Y, Stenzel M. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates. Macromol Biosci 2016; 16:791-802. [DOI: 10.1002/mabi.201500453] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/23/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales, UNSW; Kensington NSW 2052 Australia
| | - Martina Stenzel
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales, UNSW; Kensington NSW 2052 Australia
| |
Collapse
|
15
|
Dag A, Jiang Y, Karim KJA, Hart-Smith G, Scarano W, Stenzel MH. Polymer-Albumin Conjugate for the Facilitated Delivery of Macromolecular Platinum Drugs. Macromol Rapid Commun 2015; 36:890-897. [DOI: 10.1002/marc.201400576] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Aydan Dag
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Bezmialem Vakif University; 34093 Fatih Istanbul Turkey
| | - Yanyan Jiang
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Khairil Juhanni Abd Karim
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
- Department of Chemistry; Faculty of Science; Universiti Teknologi Malaysia (UTM); 81310 UTM Skudai Johor Malaysia
| | - Gene Hart-Smith
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney 2052 Australia
| | - Wei Scarano
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| |
Collapse
|
16
|
Jiang Y, Wong CK, Stenzel MH. An Oligonucleotide Transfection Vector Based on HSA and PDMAEMA Conjugation: Effect of Polymer Molecular Weight on Cell Proliferation and on Multicellular Tumor Spheroids. Macromol Biosci 2015; 15:965-78. [PMID: 25809941 DOI: 10.1002/mabi.201500006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/09/2015] [Indexed: 02/03/2023]
Abstract
A novel gene transfection vector was fabricated based on the conjugation of human serum albumin (HSA) and maleimide end functionalized poly[(N,N-dimethylamino) ethyl methacrylate] (PDMAEMA). The bioconjugation was achieved in a site-specific manner to yield well-defined polymer-protein conjugates. The biohybrid was able to bind DNA with high affinity resulting in nanoparticles with a HSA shell. This paper mainly focuses on the influence of polymeric chain length on the particle properties and their drug-carrying ability to deliver oligonucleotides into breast cancer cells. The cytotoxic agent of interest, ISIS5132, is an oligonucleotide which disrupts DNA function within the cell. There was no evidence that the polymeric chain length had any effects on the conjugation efficiency and the subsequent condensation ability of the conjugates to oligonucleotide. However, the polymeric chain length had an obvious effect on the size of the complex micelles. Low molecular weights only led to loosely compacted complexes with the oligonucleotide, while large molecular weight led to well-defined nanoparticle structures. More importantly, it was found that the variation in the length of the PDMAEMA block resulted in a change in cytotoxicity of the drug loaded complex micelle. That is, the concentration of 50% inhibition (IC50 ) of the complex micelle on MDA-MB-231 and MCF-7 cells reached the lowest value at a chain length of around 21 000 g mol(-1) . The IC50 value increased when the polymeric chain length was shorter (8000 g mol(-1) and 10 000 g mol(-1) ) while it increased again when PDMAMEA of M¯n = 47 000 g mol(-1) , probably due to insufficient release of the drug. These result were reflected when investigating the performance of the polyplex using MCF-7 multicellular tumor spheroids, where again the medium PDMAEMA chain length led to the best delivery vehicle for ISIS5132.
Collapse
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular Design, School of Chemistry and School of Chemical Engineering, University of New South Wales UNSW, Kensington NSW 2052, Australia
| | - Chin Ken Wong
- Centre for Advanced Macromolecular Design, School of Chemistry and School of Chemical Engineering, University of New South Wales UNSW, Kensington NSW 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry and School of Chemical Engineering, University of New South Wales UNSW, Kensington NSW 2052, Australia.
| |
Collapse
|
17
|
Jiang Y, Lu H, Khine YY, Dag A, Stenzel MH. Polyion complex micelle based on albumin-polymer conjugates: multifunctional oligonucleotide transfection vectors for anticancer chemotherapeutics. Biomacromolecules 2014; 15:4195-205. [PMID: 25290019 DOI: 10.1021/bm501205x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Novel biocompatible polyion complex micelles, containing bovine serum albumin (BSA), polymer, and oligonucleotide, were synthesized as a generation of vectors for the gene transfection. Maleimide-terminated poly((N,N-dimethyl amino) ethyl methacrylate) (PDMAEMA) was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization and subsequently deprotected. Precise one to one albumin-PDMAEMA bioconjugates have been achieved via 1,4-addition with the free thiol group on Cys34 on the BSA protein. SDS-PAGE and GPC (water) confirmed and quantified the successful conjugation. The conjugation efficiency was found to be independent of the molecular weight of PDMAEMA. After careful pH adjustment, the conjugate could efficiently condense anticancer oligonucleotide, ISIS 5132, which resulted in particles of 15-35 nm with a negative zeta-potential. The size was easily controlled by the polymer chain length. The albumin corona provides complete protection of the cationic polymer and genetic drug, which gave rise to lower potential toxicity from the polymer and higher gene transfection efficiency. Although a control experiment with a traditional PEG-based polyion complex micelle could deliver the drug just as effectively, if not more so, to the ovarian cancer cell line OVCAR-3, this carrier had no selectivity toward cancerous cells and proved just as toxic to HS27 (fibroblast) cell line. In contrast, the albumin-coated particles demonstrated desirable selectivity toward cancerous cells and have been shown to have outstanding performance in the cytotoxicity tests of several carcinoma monolayer cell models. In addition, the complex micelles were able to destroy pancreatic multicellular tumor spheroids, while free ISIS 5132 could not penetrate the spheroid at all. Hence, albumin-coated/oligonucleotide complex micelles are far more promising than the most classical gene delivery vectors.
Collapse
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
18
|
Liu Z, Dong C, Wang X, Wang H, Li W, Tan J, Chang J. Self-assembled biodegradable protein-polymer vesicle as a tumor-targeted nanocarrier. ACS APPLIED MATERIALS & INTERFACES 2014; 6:2393-400. [PMID: 24456410 DOI: 10.1021/am404734c] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Self-assembled nanostructures based on amphiphilic protein-polymer conjugates have shown great advantages in the field of nanomedicine such as inherent biocompatibility with biosystems because of their excellent performance. Herein, a novel biodegradable protein-polymer conjugate was prepared by covalently linking the tailor-made hydrophobic maleimide-functionalized poly(ε-caprolactone) (PCL) to hydrophilic bovine serum albumin (BSA) via the maleimide-sulfhydryl coupling reaction. This protein-based conjugate with a biodegradable polyester was reported for the first time, and the obtained biohybrid displayed well-defined structure, excellent biocompatibility and low cytotoxicity, and self-assembly behaviors similar to those of the traditional amphiphilic small molecules and block copolymers. The amphiphilic BSA-PCL conjugate can self-assemble into a nanosized vesicle with a negative surface charge. Furthermore, the self-assembled vesicle based on the BSA-PCL conjugate was functionalized via linking targeting ligand cetuximab to its surface to enhance cell uptake, and the doxorubicin (DOX)-encapsulated cetuximab-functionalized vesicle exhibited enhanced antitumor activity compared with that of free DOX in vitro. These results indicate that the biodegradable protein-polymer conjugate based on BSA and PCL had great potential as a drug delivery vehicle for cancer therapy.
Collapse
Affiliation(s)
- Zhongyun Liu
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University , Tianjin 300072, P. R. China
| | | | | | | | | | | | | |
Collapse
|
19
|
Wan X, Zhang G, Ge Z, Narain R, Liu S. Construction of Polymer-Protein Bioconjugates with Varying Chain Topologies: Polymer Molecular Weight and Steric Hindrance Effects. Chem Asian J 2011; 6:2835-45. [DOI: 10.1002/asia.201100489] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Indexed: 11/06/2022]
|
20
|
Tao L, Chen G, Zhao L, Xu J, Huang E, Liu A, Marquis CP, Davis TP. Protein Release from Biodegradable PolyHPMA-Lysozyme Conjugates Resulting in Bioactivity Enhancement. Chem Asian J 2011; 6:1398-404. [DOI: 10.1002/asia.201000729] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Indexed: 01/13/2023]
|
21
|
Li M, Li H, De P, Sumerlin BS. Thermoresponsive block copolymer-protein conjugates prepared by grafting-from via RAFT polymerization. Macromol Rapid Commun 2011; 32:354-9. [PMID: 21433183 DOI: 10.1002/marc.201000619] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/26/2010] [Indexed: 12/22/2022]
Abstract
Well-defined "smart" block copolymer-protein conjugates were prepared by two consecutive "grafting-from" reactions via reversible addition-fragmentation chain transfer (RAFT) polymerization. The initiating portion (R-group) of the RAFT agent was anchored to a model protein such that the thiocarbonylthio moiety was readily accessible for chain transfer with propagating chains in solution. Well-defined polymer-protein conjugates of poly(N-isopropylacrylamide) (PNIPAM) and bovine serum albumin (BSA) were prepared at room temperature in aqueous media. The retained trithiocarbonate moiety on the free end group of the immobilized polymer allowed the homopolymer conjugate to be extended by polymerization of N,N-dimethylacrylamide. Polyacrylamide gel electrophoresis, size exclusion chromatography, and NMR spectroscopy confirmed the synthesis of the various conjugates and revealed that the polymerizations were well controlled. As expected, the resulting block copolymer-protein conjugates demonstrated thermoresponsive behavior due to the temperature-sensitivity of the PNIPAM block, as evidenced by turbidity measurements and dynamic light scattering analysis.
Collapse
Affiliation(s)
- Ming Li
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA
| | | | | | | |
Collapse
|
22
|
Delaittre G, Reynhout I, Cornelissen J, Nolte R. Cascade Reactions in an All-Enzyme Nanoreactor. Chemistry 2009; 15:12600-3. [DOI: 10.1002/chem.200902063] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Dondoni A, Massi A, Nanni P, Roda A. A New Ligation Strategy for Peptide and Protein Glycosylation: Photoinduced Thiol-Ene Coupling. Chemistry 2009; 15:11444-9. [DOI: 10.1002/chem.200901746] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|