1
|
Yang F, Hu W, Yang C, Patrick M, Cooksy AL, Zhang J, Aguiar JA, Fang C, Zhou Y, Meng YS, Huang J, Gu J. Tuning Internal Strain in Metal–Organic Frameworks via Vapor Phase Infiltration for CO
2
Reduction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fan Yang
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego USA
| | - Wenhui Hu
- Department of Chemistry Marquette University Milwaukee WI 53201 USA
| | - Chongqing Yang
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Margaret Patrick
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego USA
| | - Andrew L. Cooksy
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego USA
| | - Jian Zhang
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Jeffery A. Aguiar
- Nuclear Materials Department Idaho National Laboratory 2525 Fremont Avenue Idaho Falls ID 83415 USA
| | - Chengcheng Fang
- Materials Science and Engineering Program University of California San Diego La Jolla CA 92093 USA
| | - Yinghua Zhou
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego USA
- The Key Laboratory of Functional Molecular Solids Ministry of Education Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 China
| | - Ying Shirley Meng
- Materials Science and Engineering Program University of California San Diego La Jolla CA 92093 USA
| | - Jier Huang
- Department of Chemistry Marquette University Milwaukee WI 53201 USA
| | - Jing Gu
- Department of Chemistry and Biochemistry San Diego State University 5500 Campanile Drive San Diego USA
| |
Collapse
|
2
|
Yang F, Hu W, Yang C, Patrick M, Cooksy AL, Zhang J, Aguiar JA, Fang C, Zhou Y, Meng YS, Huang J, Gu J. Tuning Internal Strain in Metal-Organic Frameworks via Vapor Phase Infiltration for CO 2 Reduction. Angew Chem Int Ed Engl 2020; 59:4572-4580. [PMID: 31914215 DOI: 10.1002/anie.202000022] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 01/10/2023]
Abstract
A gas-phase approach to form Zn coordination sites on metal-organic frameworks (MOFs) by vapor-phase infiltration (VPI) was developed. Compared to Zn sites synthesized by the solution-phase method, VPI samples revealed approximately 2.8 % internal strain. Faradaic efficiency towards conversion of CO2 to CO was enhanced by up to a factor of four, and the initial potential was positively shifted by 200-300 mV. Using element-specific X-ray absorption spectroscopy, the local coordination environment of the Zn center was determined to have square-pyramidal geometry with four Zn-N bonds in the equatorial plane and one Zn-OH2 bond in the axial plane. The fine-tuned internal strain was further supported by monitoring changes in XRD and UV/Visible absorption spectra across a range of infiltration cycles. The ability to use internal strain to increase catalytic activity of MOFs suggests that applying this strategy will enhance intrinsic catalytic capabilities of a variety of porous materials.
Collapse
Affiliation(s)
- Fan Yang
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, USA
| | - Wenhui Hu
- Department of Chemistry, Marquette University, Milwaukee, WI, 53201, USA
| | - Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Margaret Patrick
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, USA
| | - Andrew L Cooksy
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, USA
| | - Jian Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jeffery A Aguiar
- Nuclear Materials Department, Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, ID, 83415, USA
| | - Chengcheng Fang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yinghua Zhou
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, USA.,The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Ying Shirley Meng
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, WI, 53201, USA
| | - Jing Gu
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, USA
| |
Collapse
|
3
|
Diller K, Papageorgiou AC, Klappenberger F, Allegretti F, Barth JV, Auwärter W. In vacuo interfacial tetrapyrrole metallation. Chem Soc Rev 2016; 45:1629-56. [PMID: 26781034 DOI: 10.1039/c5cs00207a] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The metallation of tetrapyrroles at well-defined surfaces under ultra-high vacuum conditions represents an unconventional synthesis approach to achieve tetrapyrrole-based metal-organic complexes and architectures. Different protocols, pioneered over the last decade, and now widely applied in several fields, provide an elegant route to metallo-tetrapyrrole systems often elusive to conventional procedures and give access and exquisite insight into on-surface tetrapyrrole chemistry. As highlighted by the functionality of metallo-porphyrins in biological or other environments and by the eminent role of metallo-phthalocyanines in synthetic materials, the control on the metal centres incorporated into the macrocycle is of utmost importance to achieve tailored properties in tetrapyrrole-based nanosystems. In the on-surface scenario, precise metallation pathways were developed, including reactions of tetrapyrroles with metals supplied by physical vapour deposition, chemical vapour deposition or the tip of a scanning tunnelling microscope, and self-metallation by atoms of an underlying support. Herein, we provide a comprehensive overview of in vacuo tetrapyrrole metallation, addressing two-dimensional as well as three-dimensional systems. Furthermore, we comparatively assess the available library of on-surface metallation protocols and elaborate on the state-of-the-art methodology.
Collapse
Affiliation(s)
- Katharina Diller
- Physik-Department E20, Technische Universität München (TUM), James-Franck-Str. 1, 85748 Garching, Germany. and Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland.
| | - Anthoula C Papageorgiou
- Physik-Department E20, Technische Universität München (TUM), James-Franck-Str. 1, 85748 Garching, Germany.
| | - Florian Klappenberger
- Physik-Department E20, Technische Universität München (TUM), James-Franck-Str. 1, 85748 Garching, Germany.
| | - Francesco Allegretti
- Physik-Department E20, Technische Universität München (TUM), James-Franck-Str. 1, 85748 Garching, Germany.
| | - Johannes V Barth
- Physik-Department E20, Technische Universität München (TUM), James-Franck-Str. 1, 85748 Garching, Germany.
| | - Willi Auwärter
- Physik-Department E20, Technische Universität München (TUM), James-Franck-Str. 1, 85748 Garching, Germany.
| |
Collapse
|
5
|
Patil AJ, Lee YC, Yang JW, Mann S. Mesoscale Integration in Titania/J-Aggregate Hybrid Nanofibers. Angew Chem Int Ed Engl 2011; 51:733-7. [DOI: 10.1002/anie.201101383] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Indexed: 11/07/2022]
|
7
|
Puttaswamy M, Haugshøj KB, Højslet Christensen L, Kingshott P. Molecular Mechanisms of Aluminum Oxide Thin Film Growth on Polystyrene during Atomic Layer Deposition. Chemistry 2010; 16:13925-9. [DOI: 10.1002/chem.201001888] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|