1
|
Jeon S, Park R, Jeong J, Heo G, Lee J, Shin MC, Kwon YW, Yang JC, Park WI, Kim KS, Park J, Hong SW. Rotating Cylinder-Assisted Nanoimprint Lithography for Enhanced Chemisorbable Filtration Complemented by Molecularly Imprinted Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105733. [PMID: 34854553 DOI: 10.1002/smll.202105733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Rotating cylindrical stamp-based nanoimprint technique has many advantages, including the continuous fabrication of intriguing micro/nanostructures and rapid pattern transfer on a large scale. Despite these advantages, the previous nanoimprint lithography has rarely been used for producing sophisticated nanoscale patterns on a non-planar substrate that has many extended applications. Here, the simple integration of nanoimprinting process with a help of a transparent stamp wrapped on the cylindrical roll and UV optical source in the core to enable high-throughput pattern transfer, particularly on a fabric substrate is demonstrated. Moreover, as a functional resin material, this innovative strategy involves a synergistic approach on the synthesis of molecularly imprinted polymer, which are spatially organized free-standing perforated nanostructures such as nano/microscale lines, posts, and holes patterns on various woven or nonwoven blank substrates. The proposed materials can serve as a self-encoded filtration medium for selective separation of formaldehyde molecules. It is envisioned that the combinatorial fabrication process and attractive material paves the way for designing next-generation separation systems in use to capture industrial or household toxic substances.
Collapse
Affiliation(s)
- Sangheon Jeon
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Rowoon Park
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeonghwa Jeong
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Gyeonghwa Heo
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jihye Lee
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Min Chan Shin
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Young Woo Kwon
- Department of Nano-fusion Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jin Chul Yang
- School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Woon Ik Park
- Department of Materials Science and Engineering, College of Engineering, Pukyong National University, Busan, 48547, Republic of Korea
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jinyoung Park
- School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Suck Won Hong
- Department of Optics and Mechatronics Engineering, Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|