1
|
Karasu T, Özgür E, Uzun L. MIP-on-a-chip: Artificial receptors on microfluidic platforms for biomedical applications. J Pharm Biomed Anal 2023; 226:115257. [PMID: 36669397 DOI: 10.1016/j.jpba.2023.115257] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Lab-on-a-chip (LOC) as an alternative biosensing approach concerning cost efficiency, parallelization, ergonomics, diagnostic speed, and sensitivity integrates the techniques of various laboratory operations such as biochemical analysis, chemical synthesis, or DNA sequencing, etc. on miniaturized microfluidic single chips. Meanwhile, LOC tools based on molecularly imprinted biosensing approach permit their applications in various fields such as medical diagnostics, pharmaceuticals, etc., which are user-, and eco-friendly sensing platforms for not only alternative to the commercial competitor but also on-site detection like point-of-care measurements. In this review, we focused our attention on compiling recent pioneer studies that utilized those intriguing methodologies, the microfluidic Lab-on-a-chip and molecularly imprinting approach, and their biomedical applications.
Collapse
Affiliation(s)
- Tunca Karasu
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Erdoğan Özgür
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye.
| |
Collapse
|
2
|
Lavorato GC, Das R, Alonso Masa J, Phan MH, Srikanth H. Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications. NANOSCALE ADVANCES 2021; 3:867-888. [PMID: 36133290 PMCID: PMC9418677 DOI: 10.1039/d0na00828a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/06/2021] [Indexed: 05/04/2023]
Abstract
Heating at the nanoscale is the basis of several biomedical applications, including magnetic hyperthermia therapies and heat-triggered drug delivery. The combination of multiple inorganic materials in hybrid magnetic nanoparticles provides versatile platforms to achieve an efficient heat delivery upon different external stimuli or to get an optical feedback during the process. However, the successful design and application of these nanomaterials usually require intricate synthesis routes and their magnetic response is still not fully understood. In this review we give an overview of the novel systems reported in the last few years, which have been mostly obtained by organic phase-based synthesis and epitaxial growth processes. Since the heating efficiency of hybrid magnetic nanoparticles often relies on the exchange-interaction between their components, we discuss various interface-phenomena that are responsible for their magnetic properties. Finally, followed by a brief comment on future directions in the field, we outline recent advances on multifunctional nanoparticles that can boost the heating power with light and combine heating and temperature sensing in a single nanomaterial.
Collapse
Affiliation(s)
- Gabriel C Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Universidad Nacional de La Plata 1900 La Plata Argentina
| | - Raja Das
- Faculty of Materials Science and Engineering and Phenikaa Institute for Advanced Study (PIAS), Phenikaa University Hanoi 10000 Vietnam
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group 167 Hoang Ngan Hanoi 10000 Vietnam
| | | | - Manh-Huong Phan
- Department of Physics, University of South Florida 33620 Tampa FL USA
| | | |
Collapse
|
3
|
Gupta S, Bhatter P, Kakkar V. Point-of-care detection of tuberculosis using magnetoresistive biosensing chip. Tuberculosis (Edinb) 2021; 127:102055. [PMID: 33561629 DOI: 10.1016/j.tube.2021.102055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
In this paper, a highly sensitive and specific technique based on the principle of giant magnetoresistance (GMR) has been proposed for the early stage Tuberculosis (TB) diagnostics. This GMR biosensing assay employs monoclonal antibodies against M. tuberculosis specific ESAT-6 antigen with the use of magnetic nanoparticles (MNPs) as labels. MNPs bind to the GMR sensor in presence of ESAT-6 and the binding is proportional to the ESAT-6 protein concentration leading to the change in overall resistance of GMR sensor. GMR biosensor simulation showed that ESAT-6 concentration can be detected in the range of pg/mL in comparison to the other transduction techniques available for ESAT-6 detection and further, the signal strength increased with the increase in the concentration. This work has shown that the GMR biosensing strategy is pertinent for the TB detection at the primitive phases when compared with other magnetic techniques used for TB diagnostics.
Collapse
Affiliation(s)
- Shagun Gupta
- School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India.
| | - Purva Bhatter
- Post Doc in Tuberculosis Immunology from Indian Institute of Technology, Madras, Chennai, India.
| | - Vipan Kakkar
- School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India.
| |
Collapse
|
4
|
Khizar S, Ben Halima H, Ahmad NM, Zine N, Errachid A, Elaissari A. Magnetic nanoparticles in microfluidic and sensing: From transport to detection. Electrophoresis 2020; 41:1206-1224. [DOI: 10.1002/elps.201900377] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Sumera Khizar
- Université de Lyon LAGEP, UMR‐5007, CNRS, Université Lyon 1, 5007 43 Bd 11 Novembre 1918 Villeurbanne F‐69622 France
- Polymer Research Lab School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) H‐12 Sector Islamabad 44000 Pakistan
| | - Hamdi Ben Halima
- Université de Lyon Institut des Science Analytiques UMR 5280, CNRS Université Lyon 1 ENS Lyon-5, rue de la Doua Villeurbanne F‐69100 France
| | - Nasir M. Ahmad
- Polymer Research Lab School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) H‐12 Sector Islamabad 44000 Pakistan
| | - Nadia Zine
- Université de Lyon Institut des Science Analytiques UMR 5280, CNRS Université Lyon 1 ENS Lyon-5, rue de la Doua Villeurbanne F‐69100 France
| | - Abdelhamid Errachid
- Université de Lyon Institut des Science Analytiques UMR 5280, CNRS Université Lyon 1 ENS Lyon-5, rue de la Doua Villeurbanne F‐69100 France
| | - Abdelhamid Elaissari
- Université de Lyon LAGEP, UMR‐5007, CNRS, Université Lyon 1, 5007 43 Bd 11 Novembre 1918 Villeurbanne F‐69622 France
| |
Collapse
|
5
|
Zamani P, Ozdemir J, Ha Y, Benamara M, Kuchuk AV, Wang T, Chen J, Khosropour AR, Beyzavi MH. Magnetic Nanoparticle Anchored Deep Eutectic Solvents as a Catalyst for the Etherification and Amination of Naphthols. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Parisa Zamani
- Department of Chemistry; University of Isfahan; Isfahan 81746-73441 Iran
| | - John Ozdemir
- Department of Chemistry and Biochemistry; University of Arkansas; Fayetteville, Arkansas 72701 United States
| | - Yumi Ha
- Department of Chemistry and Biochemistry; University of Arkansas; Fayetteville, Arkansas 72701 United States
| | - Mourad Benamara
- Institute for Nano Science and Engineering; University of Arkansas; Fayetteville, Arkansas 72701 United States
| | - Adrian V. Kuchuk
- Institute for Nano Science and Engineering; University of Arkansas; Fayetteville, Arkansas 72701 United States
| | - Tengjiao Wang
- Department of Chemistry and Biochemistry; University of Arkansas; Fayetteville, Arkansas 72701 United States
| | - Jingyi Chen
- Department of Chemistry and Biochemistry; University of Arkansas; Fayetteville, Arkansas 72701 United States
| | - Ahmad R. Khosropour
- Department of Chemistry; University of Isfahan; Isfahan 81746-73441 Iran
- Department of Chemistry and Biochemistry; University of Arkansas; Fayetteville, Arkansas 72701 United States
| | - M. Hassan Beyzavi
- Department of Chemistry and Biochemistry; University of Arkansas; Fayetteville, Arkansas 72701 United States
- Institute for Nano Science and Engineering; University of Arkansas; Fayetteville, Arkansas 72701 United States
| |
Collapse
|
6
|
Cho IH, Ku S. Current Technical Approaches for the Early Detection of Foodborne Pathogens: Challenges and Opportunities. Int J Mol Sci 2017; 18:ijms18102078. [PMID: 28974002 PMCID: PMC5666760 DOI: 10.3390/ijms18102078] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/21/2022] Open
Abstract
The development of novel and high-tech solutions for rapid, accurate, and non-laborious microbial detection methods is imperative to improve the global food supply. Such solutions have begun to address the need for microbial detection that is faster and more sensitive than existing methodologies (e.g., classic culture enrichment methods). Multiple reviews report the technical functions and structures of conventional microbial detection tools. These tools, used to detect pathogens in food and food homogenates, were designed via qualitative analysis methods. The inherent disadvantage of these analytical methods is the necessity for specimen preparation, which is a time-consuming process. While some literature describes the challenges and opportunities to overcome the technical issues related to food industry legal guidelines, there is a lack of reviews of the current trials to overcome technological limitations related to sample preparation and microbial detection via nano and micro technologies. In this review, we primarily explore current analytical technologies, including metallic and magnetic nanomaterials, optics, electrochemistry, and spectroscopy. These techniques rely on the early detection of pathogens via enhanced analytical sensitivity and specificity. In order to introduce the potential combination and comparative analysis of various advanced methods, we also reference a novel sample preparation protocol that uses microbial concentration and recovery technologies. This technology has the potential to expedite the pre-enrichment step that precedes the detection process.
Collapse
Affiliation(s)
- Il-Hoon Cho
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 461-713, Korea.
| | - Seockmo Ku
- Fermentation Science Program, School of Agribusiness and Agriscience, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
| |
Collapse
|
7
|
Hartmann M, Betz P, Sun Y, Gorb SN, Lindhorst TK, Krueger A. Saccharide-Modified Nanodiamond Conjugates for the Efficient Detection and Removal of Pathogenic Bacteria. Chemistry 2012; 18:6485-92. [DOI: 10.1002/chem.201104069] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Indexed: 11/11/2022]
|
8
|
Cheong S, Ferguson P, Hermans IF, Jameson GNL, Prabakar S, Herman DAJ, Tilley RD. Synthesis and Stability of Highly Crystalline and Stable Iron/Iron Oxide Core/Shell Nanoparticles for Biomedical Applications. Chempluschem 2012. [DOI: 10.1002/cplu.201100074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Koester DC, Awan SI, Werz DB. Hot on the Trail of Trehalose: A Carbohydrate-Based Method for Imaging Mycobacterium tuberculosis. Chembiochem 2011; 12:1975-7. [DOI: 10.1002/cbic.201100325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Indexed: 11/12/2022]
|
10
|
Yoon TJ, Lee H, Shao H, Weissleder R. Highly Magnetic Core-Shell Nanoparticles with a Unique Magnetization Mechanism. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Yoon TJ, Lee H, Shao H, Weissleder R. Highly magnetic core-shell nanoparticles with a unique magnetization mechanism. Angew Chem Int Ed Engl 2011; 50:4663-6. [PMID: 21495138 DOI: 10.1002/anie.201100101] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/03/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Tae-Jong Yoon
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, Boston, 02114, USA
| | | | | | | |
Collapse
|
12
|
Cheong S, Ferguson P, Feindel KW, Hermans IF, Callaghan PT, Meyer C, Slocombe A, Su CH, Cheng FY, Yeh CS, Ingham B, Toney MF, Tilley RD. Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Cheong S, Ferguson P, Feindel KW, Hermans IF, Callaghan PT, Meyer C, Slocombe A, Su CH, Cheng FY, Yeh CS, Ingham B, Toney MF, Tilley RD. Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2011; 50:4206-9. [DOI: 10.1002/anie.201100562] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Indexed: 11/11/2022]
|
14
|
Rapid Colorimetric Identification and Targeted Photothermal Lysis ofSalmonellaBacteria by Using Bioconjugated Oval-Shaped Gold Nanoparticles. Chemistry 2010; 16:5600-6. [DOI: 10.1002/chem.201000176] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|