1
|
Zhou K, Mei Z, Lei Y, Guan Z, Mao C, Li Y. Boosted Productivity in Single-Tile-Based DNA Polyhedra Assembly by Simple Cation Replacement. Chembiochem 2022; 23:e202200138. [PMID: 35676202 DOI: 10.1002/cbic.202200138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Indexed: 11/11/2022]
Abstract
Cations such as divalent magnesium ion (Mg2+ ) play an essential role in DNA self-assembly. However, the strong electrostatic shielding effect of Mg2+ would be disadvantageous in some situations that require relatively weak interactions to allow a highly reversible error-correcting mechanism in the process of assembly. Herein, by substituting the conventional divalent Mg2+ with monovalent sodium ion (Na+ ), we have achieved one-pot high-yield assembly of tile-based DNA polyhedra at micromolar concentration of tiles, at least 10 times higher than the DNA concentrations reported previously. This strategy takes advantage of coexisting counterions and is expected to surmount the major obstacle to potential applications of such DNA nanostructures: large-scale production.
Collapse
Affiliation(s)
- Kaixuan Zhou
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhichao Mei
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Yunxiang Lei
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhen Guan
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Yulin Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
2
|
Copp W, Wilds CJ. O 6 -Alkylguanine DNA Alkyltransferase Mediated Disassembly of a DNA Tetrahedron. Chemistry 2020; 26:14802-14806. [PMID: 32543755 DOI: 10.1002/chem.202002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 11/05/2022]
Abstract
Tetrahedron DNA structures were formed by the assembly of three-way junction (TWJ) oligonucleotides containing O6 -2'-deoxyguanosine-alkylene-O6 -2'-deoxyguanosine (butylene and heptylene linked) intrastrand cross-links (IaCLs) lacking a phosphodiester group between the 2'-deoxyribose residues. The DNA tetrahedra containing TWJs were shown to undergo an unhooking reaction by the human DNA repair protein O6 -alkylguanine DNA alkyltransferase (hAGT) resulting in structure disassembly. The unhooking reaction of hAGT towards the DNA tetrahedra was observed to be moderate to virtually complete depending on the protein equivalents. DNA tetrahedron structures have been explored as drug delivery platforms that release their payload in response to triggers, such as light, chemical agents or hybridization of release strands. The dismantling of DNA tetrahedron structures by a DNA repair protein contributes to the armamentarium of approaches for drug release employing DNA nanostructures.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
3
|
Abstract
Nucleic acids hold great promise for bottom-up construction of nanostructures via programmable self-assembly. Especially, the emerging of advanced sequence design principles and the maturation of chemical synthesis of nucleic acids together have led to the rapid development of structural DNA/RNA nanotechnology. Diverse nucleic acids-based nano objects and patterns have been constructed with near-atomic resolutions and with controllable sizes and geometries. The monodispersed distribution of objects, the up-to-submillimeter scalability of patterns, and the excellent feasibility of carrying other materials with spatial and temporal resolutions have made DNA/RNA assemblies extremely unique in molecular engineering. In this review, we summarize recent advances in nucleic acids-based (mainly DNA-based) near-atomic fabrication by focusing on state-of-the-art design techniques, toolkits for DNA/RNA nanoengineering, and related applications in a range of areas.
Collapse
Affiliation(s)
- Kai Xia
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qian Li
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Hongzhou Gu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , China
| |
Collapse
|
4
|
Huang K, Yang D, Tan Z, Chen S, Xiang Y, Mi Y, Mao C, Wei B. Self-Assembly of Wireframe DNA Nanostructures from Junction Motifs. Angew Chem Int Ed Engl 2019; 58:12123-12127. [PMID: 31190457 DOI: 10.1002/anie.201906408] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 01/15/2023]
Abstract
Wireframe frameworks have been investigated for the construction of complex nanostructures from a scaffolded DNA origami approach; however, a similar framework is yet to be fully explored in a scaffold-free "LEGO" approach. Herein, we describe a general design scheme to construct wireframe DNA nanostructures entirely from short synthetic strands. A typical edge of the resulting structures in this study is composed of two parallel duplexes with crossovers on both ends, and three, four, or five edges radiate out from a certain vertex. By using such a self-assembly scheme, we produced planar lattices and polyhedral objects.
Collapse
Affiliation(s)
- Kai Huang
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Donglei Yang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Zhenyu Tan
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.,Present address: Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Silian Chen
- Center for Infectious Disease Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innvation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Peking University, Beijing, 100084, China
| | - Ye Xiang
- Center for Infectious Disease Research, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innvation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yongli Mi
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.,Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Bryan Wei
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Huang K, Yang D, Tan Z, Chen S, Xiang Y, Mi Y, Mao C, Wei B. Self‐Assembly of Wireframe DNA Nanostructures from Junction Motifs. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Huang
- School of Life Sciences Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Donglei Yang
- School of Chemical Science and Engineering Tongji University Shanghai 200092 China
- Institute of Molecular Medicine (IMM) Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200127 China
| | - Zhenyu Tan
- School of Life Sciences Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
- Present address: Biophysics Program University of Michigan Ann Arbor MI 48109 USA
| | - Silian Chen
- Center for Infectious Disease Research Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Beijing Advanced Innvation Center for Structural Biology Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing 100084 China
- School of Life Sciences Peking University Beijing 100084 China
| | - Ye Xiang
- Center for Infectious Disease Research Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases Beijing Advanced Innvation Center for Structural Biology Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing 100084 China
| | - Yongli Mi
- School of Chemical Science and Engineering Tongji University Shanghai 200092 China
- Department of Chemical and Biological Engineering Hong Kong University of Science and Technology Kowloon Hong Kong SAR China
| | - Chengde Mao
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Bryan Wei
- School of Life Sciences Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
6
|
Hu Q, Wang S, Wang L, Gu H, Fan C. DNA Nanostructure-Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides. Adv Healthc Mater 2018; 7:e1701153. [PMID: 29356400 DOI: 10.1002/adhm.201701153] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/27/2017] [Indexed: 12/15/2022]
Abstract
In the beginning of the 21st century, therapeutic oligonucleotides have shown great potential for the treatment of many life-threatening diseases. However, effective delivery of therapeutic oligonucleotides to the targeted location in vivo remains a major issue. As an emerging field, DNA nanotechnology is applied in many aspects including bioimaging, biosensing, and drug delivery. With sequence programming and optimization, a series of DNA nanostructures can be precisely engineered with defined size, shape, surface chemistry, and function. Simply with hybridization, therapeutic oligonucleotides including unmethylated cytosine-phosphate-guanine dinucleotide oligos, small interfering RNA (siRNA) or antisense RNA, single guide RNA of the regularly interspaced short palindromic repeat-Cas9 system, and aptamers, are successfully loaded on DNA nanostructures for delivery. In this progress report, the development history of DNA nanotechnology is first introduced, and then the mechanisms and means for cellular uptake of DNA nanostructures are discussed. Next, current approaches to deliver therapeutic oligonucleotides with DNA nanovehicles are summarized. In the end, the challenges and opportunities for DNA nanostructure-based systems for the delivery of therapeutic oligonucleotides are discussed.
Collapse
Affiliation(s)
- Qinqin Hu
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences; Shanghai Medical College of Fudan University; Fudan University; Shanghai 200032 China
| | - Sheng Wang
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences; Shanghai Medical College of Fudan University; Fudan University; Shanghai 200032 China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and Institutes of Biomedical Sciences; Shanghai Medical College of Fudan University; Fudan University; Shanghai 200032 China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center; Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| |
Collapse
|
7
|
Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem Rev 2018; 119:6459-6506. [PMID: 29465222 DOI: 10.1021/acs.chemrev.7b00663] [Citation(s) in RCA: 576] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, we have seen rapid advances in applying nanotechnology in biomedical areas including bioimaging, biodetection, and drug delivery. As an emerging field, DNA nanotechnology offers simple yet powerful design techniques for self-assembly of nanostructures with unique advantages and high potential in enhancing drug targeting and reducing drug toxicity. Various sequence programming and optimization approaches have been developed to design DNA nanostructures with precisely engineered, controllable size, shape, surface chemistry, and function. Potent anticancer drug molecules, including Doxorubicin and CpG oligonucleotides, have been successfully loaded on DNA nanostructures to increase their cell uptake efficiency. These advances have implicated the bright future of DNA nanotechnology-enabled nanomedicine. In this review, we begin with the origin of DNA nanotechnology, followed by summarizing state-of-the-art strategies for the construction of DNA nanostructures and drug payloads delivered by DNA nanovehicles. Further, we discuss the cellular fates of DNA nanostructures as well as challenges and opportunities for DNA nanostructure-based drug delivery.
Collapse
Affiliation(s)
- Qinqin Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China
| | - Hua Li
- Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China.,Research & Development Center, Shandong Buchang Pharmaceutical Company, Limited, Heze 274000 , China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China.,Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
8
|
Zheng XT, Xu HV, Tan YN. Bioinspired Design and Engineering of Functional Nanostructured Materials for Biomedical Applications. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1253.ch007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Hesheng Victor Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| | - Yen Nee Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543
| |
Collapse
|
9
|
Wang W, Lin T, Zhang S, Bai T, Mi Y, Wei B. Self-assembly of fully addressable DNA nanostructures from double crossover tiles. Nucleic Acids Res 2016; 44:7989-96. [PMID: 27484479 PMCID: PMC5027514 DOI: 10.1093/nar/gkw670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/20/2016] [Indexed: 11/23/2022] Open
Abstract
DNA origami and single-stranded tile (SST) are two proven approaches to self-assemble finite-size complex DNA nanostructures. The construction elements appeared in structures from these two methods can also be found in multi-stranded DNA tiles such as double crossover tiles. Here we report the design and observation of four types of finite-size lattices with four different double crossover tiles, respectively, which, we believe, in terms of both complexity and robustness, will be rival to DNA origami and SST structures.
Collapse
Affiliation(s)
- Wen Wang
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Depatment of Chemistry, Tongji University, Shanghai 200092, China
| | - Tong Lin
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Suoyu Zhang
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Tanxi Bai
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yongli Mi
- Bioengineering Graduate Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Depatment of Chemistry, Tongji University, Shanghai 200092, China Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Bryan Wei
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M. Designer nanoscale DNA assemblies programmed from the top down. Science 2016; 352:1534. [PMID: 27229143 DOI: 10.1126/science.aaf4388] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/03/2016] [Indexed: 12/16/2022]
Abstract
Scaffolded DNA origami is a versatile means of synthesizing complex molecular architectures. However, the approach is limited by the need to forward-design specific Watson-Crick base pairing manually for any given target structure. Here, we report a general, top-down strategy to design nearly arbitrary DNA architectures autonomously based only on target shape. Objects are represented as closed surfaces rendered as polyhedral networks of parallel DNA duplexes, which enables complete DNA scaffold routing with a spanning tree algorithm. The asymmetric polymerase chain reaction is applied to produce stable, monodisperse assemblies with custom scaffold length and sequence that are verified structurally in three dimensions to be high fidelity by single-particle cryo-electron microscopy. Their long-term stability in serum and low-salt buffer confirms their utility for biological as well as nonbiological applications.
Collapse
Affiliation(s)
- Rémi Veneziano
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sakul Ratanalert
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kaiming Zhang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fei Zhang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA. Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ 85287, USA
| | - Hao Yan
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA. Biodesign Center for Molecular Design and Biomimetics (at the Biodesign Institute) at Arizona State University, Tempe, AZ 85287, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Schreck JS, Romano F, Zimmer MH, Louis AA, Doye JPK. Characterizing DNA Star-Tile-Based Nanostructures Using a Coarse-Grained Model. ACS NANO 2016; 10:4236-47. [PMID: 27010928 DOI: 10.1021/acsnano.5b07664] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We use oxDNA, a coarse-grained model of DNA at the nucleotide level, to simulate large nanoprisms that are composed of multi-arm star tiles, in which the size of bulge loops that have been incorporated into the tile design is used to control the flexibility of the tiles. The oxDNA model predicts equilibrium structures for several different nanoprism designs that are in excellent agreement with the experimental structures as measured by cryoTEM. In particular we reproduce the chiral twisting of the top and bottom faces of the nanoprisms, as the bulge sizes in these structures are varied due to the greater flexibility of larger bulges. We are also able to follow how the properties of the star tiles evolve as the prisms are assembled. Individual star tiles are very flexible, but their structures become increasingly well-defined and rigid as they are incorporated into larger assemblies. oxDNA also finds that the experimentally observed prisms are more stable than their inverted counterparts, but interestingly this preference for the arms of the tiles to bend in a given direction only emerges after they are part of larger assemblies. These results show the potential for oxDNA to provide detailed structural insight as well as to predict the properties of DNA nanostructures and hence to aid rational design in DNA nanotechnology.
Collapse
Affiliation(s)
- John S Schreck
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Flavio Romano
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
- Dipartimento di Scienze Molecolari e Nanosistemi, Universitá Ca' Foscari Venezia , I-30123 Venezia, Italy
| | - Matthew H Zimmer
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford , 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
12
|
Schreck JS, Ouldridge TE, Romano F, Louis AA, Doye JPK. Characterizing the bending and flexibility induced by bulges in DNA duplexes. J Chem Phys 2016; 142:165101. [PMID: 25933790 DOI: 10.1063/1.4917199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Advances in DNA nanotechnology have stimulated the search for simple motifs that can be used to control the properties of DNA nanostructures. One such motif, which has been used extensively in structures such as polyhedral cages, two-dimensional arrays, and ribbons, is a bulged duplex, that is, two helical segments that connect at a bulge loop. We use a coarse-grained model of DNA to characterize such bulged duplexes. We find that this motif can adopt structures belonging to two main classes: one where the stacking of the helices at the center of the system is preserved, the geometry is roughly straight, and the bulge is on one side of the duplex and the other where the stacking at the center is broken, thus allowing this junction to act as a hinge and increasing flexibility. Small loops favor states where stacking at the center of the duplex is preserved, with loop bases either flipped out or incorporated into the duplex. Duplexes with longer loops show more of a tendency to unstack at the bulge and adopt an open structure. The unstacking probability, however, is highest for loops of intermediate lengths, when the rigidity of single-stranded DNA is significant and the loop resists compression. The properties of this basic structural motif clearly correlate with the structural behavior of certain nano-scale objects, where the enhanced flexibility associated with larger bulges has been used to tune the self-assembly product as well as the detailed geometry of the resulting nanostructures. We further demonstrate the role of bulges in determining the structure of a "Z-tile," a basic building block for nanostructures.
Collapse
Affiliation(s)
- John S Schreck
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Thomas E Ouldridge
- Rudolph Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Flavio Romano
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolph Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
13
|
Li Y, Tian C, Liu Z, Jiang W, Mao C. Structural Transformation: Assembly of an Otherwise Inaccessible DNA Nanocage. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Li Y, Tian C, Liu Z, Jiang W, Mao C. Structural Transformation: Assembly of an Otherwise Inaccessible DNA Nanocage. Angew Chem Int Ed Engl 2015; 54:5990-3. [DOI: 10.1002/anie.201500755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 11/10/2022]
|
15
|
Tintoré M, Eritja R, Fábrega C. DNA Nanoarchitectures: Steps towards Biological Applications. Chembiochem 2014; 15:1374-90. [DOI: 10.1002/cbic.201402014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 12/26/2022]
|
16
|
Liu Z, Li Y, Tian C, Mao C. A Smart DNA Tetrahedron That Isothermally Assembles or Dissociates in Response to the Solution pH Value Changes. Biomacromolecules 2013; 14:1711-4. [PMID: 23647463 DOI: 10.1021/bm400426f] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhiyu Liu
- Department of Chemistry, Purdue University, West Lafayette, Indiana
47907, United
States
| | - Yingmei Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana
47907, United
States
| | - Cheng Tian
- Department of Chemistry, Purdue University, West Lafayette, Indiana
47907, United
States
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana
47907, United
States
| |
Collapse
|
17
|
Zhang C, Wu W, Li X, Tian C, Qian H, Wang G, Jiang W, Mao C. Controlling the Chirality of DNA Nanocages. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Zhang C, Wu W, Li X, Tian C, Qian H, Wang G, Jiang W, Mao C. Controlling the Chirality of DNA Nanocages. Angew Chem Int Ed Engl 2012; 51:7999-8002. [DOI: 10.1002/anie.201203875] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Indexed: 11/10/2022]
|
19
|
Zhang C, Tian C, Guo F, Liu Z, Jiang W, Mao C. DNA-Directed Three-Dimensional Protein Organization. Angew Chem Int Ed Engl 2012; 51:3382-5. [DOI: 10.1002/anie.201108710] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Indexed: 11/12/2022]
|
20
|
Zhang C, Tian C, Guo F, Liu Z, Jiang W, Mao C. DNA-Directed Three-Dimensional Protein Organization. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108710] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Yang H, Altvater F, de Bruijn AD, McLaughlin CK, Lo PK, Sleiman HF. Chiral Metal-DNA Four-Arm Junctions and Metalated Nanotubular Structures. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Yang H, Altvater F, de Bruijn AD, McLaughlin CK, Lo PK, Sleiman HF. Chiral Metal-DNA Four-Arm Junctions and Metalated Nanotubular Structures. Angew Chem Int Ed Engl 2011; 50:4620-3. [DOI: 10.1002/anie.201007403] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Indexed: 12/26/2022]
|