1
|
Zhou XY, Xu C, Guo PP, Sun WL, Wei PJ, Liu JG. Axial Ligand Coordination Tuning of the Electrocatalytic Activity of Iron Porphyrin Electrografted onto Carbon Nanotubes for the Oxygen Reduction Reaction. Chemistry 2021; 27:9898-9904. [PMID: 33876876 DOI: 10.1002/chem.202100736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 11/12/2022]
Abstract
The oxygen reduction reaction (ORR) is essential in many life processes and energy conversion systems. It is desirable to design transition metal molecular catalysts inspired by enzymatic oxygen activation/reduction processes as an alternative to noble-metal-Pt-based ORR electrocatalysts, especially in view point of fuel cell commercialization. We have fabricated bio-inspired molecular catalysts electrografted onto multiwalled carbon nanotubes (MWCNTs) in which 5,10,15,20-tetra(pentafluorophenyl) iron porphyrin (iron porphyrin FeF20 TPP) is coordinated with covalently electrografted axial ligands varying from thiophene to imidazole on the MWCNTs' surface. The catalysts' electrocatalytic activity varied with the axial coordination environment (i. e., S-thiophene, N-imidazole, and O-carboxylate); the imidazole-coordinated catalyst MWCNTs-Im-FeF20 TPP exhibited the highest ORR activity among the prepared catalysts. When MWCNT-Im-FeF20 TPP was loaded onto the cathode of a zinc-air battery, an open-cell voltage (OCV) of 1.35 V and a maximum power density (Pmax ) of 110 mW cm-2 were achieved; this was higher than those of MWCNTs-Thi-FeF20 TPP (OCV=1.30 V, Pmax =100 mW cm-2 ) and MWCNTs-Ox-FeF20 TPP (OCV=1.28 V, Pmax =86 mW cm-2 ) and comparable with a commercial Pt/C catalyst (OCV=1.45 V, Pmax =120 mW cm-2 ) under similar experimental conditions. This study provides a time-saving method to prepare covalently immobilized molecular electrocatalysts on carbon-based materials with structure-performance correlation that is also applicable to the design of other electrografted catalysts for energy conversion.
Collapse
Affiliation(s)
- Xin-You Zhou
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chao Xu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Peng-Peng Guo
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei-Li Sun
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
2
|
Kim H, Rogler PJ, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for H‐Atom Transfer (HAT). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyun Kim
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| | - Patrick J. Rogler
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| | - Savita K. Sharma
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| | | | | | - Kenneth D. Karlin
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
3
|
Kim H, Rogler PJ, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for H-Atom Transfer (HAT). Angew Chem Int Ed Engl 2021; 60:5907-5912. [PMID: 33348450 PMCID: PMC7920932 DOI: 10.1002/anie.202013791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 01/07/2023]
Abstract
A new end-on low-spin ferric heme peroxide, [(PIm )FeIII -(O22- )]- (PIm -P), and subsequently formed hydroperoxide species, [(PIm )FeIII -(OOH)] (PIm -HP) are generated utilizing the iron-porphyrinate PIm with its tethered axial base imidazolyl group. Measured thermodynamic parameters, the ferric heme superoxide [(PIm )FeIII -(O2⋅- )] (PIm -S) reduction potential (E°') and the PIm -HP pKa value, lead to the finding of the OO-H bond-dissociation free energy (BDFE) of PIm -HP as 69.5 kcal mol-1 using a thermodynamic square scheme and Bordwell relationship. The results are validated by the observed oxidizing ability of PIm -S via hydrogen-atom transfer (HAT) compared to that of the F8 superoxide complex, [(F8 )FeIII -(O2.- )] (S) (F8 =tetrakis(2,6-difluorophenyl)porphyrinate, without an internally appended axial base imidazolyl), as determined from reactivity comparison of superoxide complexes PIm -S and S with the hydroxylamine (O-H) substrates TEMPO-H and ABNO-H.
Collapse
Affiliation(s)
- Hyun Kim
- Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Patrick J Rogler
- Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Savita K Sharma
- Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Edward I Solomon
- Chemistry Department, Stanford University, Stanford, CA, 94305, USA
| | - Kenneth D Karlin
- Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
4
|
Jiang M, Fu C, Cheng R, Zhang W, Liu T, Wang R, Zhang J, Sun B. Integrated and Binder-Free Air Cathodes of Co 3 Fe 7 Nanoalloy and Co 5.47 N Encapsulated in Nitrogen-Doped Carbon Foam with Superior Oxygen Reduction Activity in Flexible Aluminum-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:e2000747. [PMID: 34437770 PMCID: PMC7509645 DOI: 10.1002/advs.202000747] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/22/2020] [Indexed: 05/14/2023]
Abstract
All-solid-sate Al-air batteries with features of high theoretical energy density, low cost, and environmental-friendliness are promising as power sources for next-generation flexible and wearable electronics. However, the sluggish oxygen reduction reaction (ORR) and poor interfacial contact in air cathodes cause unsatisfied performance. Herein, a free-standing Co3 Fe7 nanoalloy and Co5.47 N encapsulated in 3D nitrogen-doped carbon foam (Co3 Fe7 @Co5.47 N/NCF) is prepared as an additive-free and integrated air cathode for flexible Al-air batteries in both alkaline and neutral electrolytes. The Co3 Fe7 @Co5.47 N/NCF outperforms commercial platinum/carbon (Pt/C) toward ORR with an onset potential of 1.02 V and a positive half-wave potential of 0.92 V in an alkaline electrolyte (0.59 V in sodium chloride solution), which is ascribed to the unique interfacial structure between Co3 Fe7 and Co5.47 N supported by 3D N-doped carbon foam to facilitate fast electron and mass transfer. The high ORR performance is also supported by in-situ electrochemical Raman spectra and density functional theory calculation. Furthermore, the fabricated Al-air battery displays good flexibility and delivers a power density of 199.6 mW cm-2 , and the binder-free and integrated cathode shows better discharge performance than the traditionally slurry casting cathode. This work demonstrates a facile and efficient approach to develop integrated air cathode for metal-air batteries.
Collapse
Affiliation(s)
- Min Jiang
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Chaopeng Fu
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Ruiqi Cheng
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Wei Zhang
- Advanced Technology InstituteUniversity of SurreyGuildfordGU2 7XHUK
| | - Tongyao Liu
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Ruibin Wang
- Instrumental Analysis Center of SJTUShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Jiao Zhang
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Baode Sun
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| |
Collapse
|
5
|
Noel J, Kostopoulos N, Achaibou C, Fave C, Anxolabéhère‐Mallart E, Kanoufi F. Probing the Activity of Iron Peroxo Porphyrin Intermediates in the Reaction Layer during the Electrochemical Reductive Activation of O
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Nikolaos Kostopoulos
- Université de Paris, Laboratoire d'Electrochimie MoléculaireCNRS 75006 Paris France
| | - Célia Achaibou
- Université de Paris, Laboratoire d'Electrochimie MoléculaireCNRS 75006 Paris France
| | - Claire Fave
- Université de Paris, Laboratoire d'Electrochimie MoléculaireCNRS 75006 Paris France
| | | | | |
Collapse
|
6
|
Noel JM, Kostopoulos N, Achaibou C, Fave C, Anxolabéhère-Mallart E, Kanoufi F. Probing the Activity of Iron Peroxo Porphyrin Intermediates in the Reaction Layer during the Electrochemical Reductive Activation of O 2. Angew Chem Int Ed Engl 2020; 59:16376-16380. [PMID: 32543058 DOI: 10.1002/anie.202004977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 02/02/2023]
Abstract
Herein we report the first example of using scanning electrochemical microscopy (SECM) to quantitatively analyze O2 reductive activation in organic media catalyzed by three different Fe porphyrins. For each porphyrin, SECM can provide in one single experiment the redox potential of various intermediates, the association constant of FeII with O2 , and the pKa of the FeIII (OOH- )/ FeIII (OO2- ) couple. The results obtained can contribute to a further understanding of the parameters controlling the catalytic efficiency of the Fe porphyrin towards O2 activation and reduction.
Collapse
Affiliation(s)
| | - Nikolaos Kostopoulos
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, 75006, Paris, France
| | - Célia Achaibou
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, 75006, Paris, France
| | - Claire Fave
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS, 75006, Paris, France
| | | | | |
Collapse
|
7
|
Zhao Y, Yu G, Wang F, Wei P, Liu J. Bioinspired Transition‐Metal Complexes as Electrocatalysts for the Oxygen Reduction Reaction. Chemistry 2018; 25:3726-3739. [DOI: 10.1002/chem.201803764] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Ye‐Min Zhao
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Guo‐Qiang Yu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Fei‐Fei Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Ping‐Jie Wei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Jin‐Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
8
|
Shafizadeh N, Soorkia S, Grégoire G, Broquier M, Crestoni ME, Soep B. Dioxygen Binding to Protonated Heme in the Gas Phase, an Intermediate Between Ferric and Ferrous Heme. Chemistry 2017; 23:13493-13500. [DOI: 10.1002/chem.201702615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Niloufar Shafizadeh
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud; Université Paris-Saclay; 91405 Orsay France
| | - Satchin Soorkia
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud; Université Paris-Saclay; 91405 Orsay France
| | - Gilles Grégoire
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud; Université Paris-Saclay; 91405 Orsay France
| | - Michel Broquier
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud; Université Paris-Saclay; 91405 Orsay France
- Centre Laser de l'Université Paris-Sud (CLUPS/LUMAT), Université Paris-Sud, CNRS, IOGS, Université Paris-Saclay; 91405 Orsay France
| | - Maria-Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco; Università degli Studi di Roma “La Sapienza”; P. le A. Moro 5 00185 Roma Italy
| | - Benoît Soep
- LIDYL, CEA, CNRS; Université Paris-Saclay, CEA Saclay; 91191 Gif-sur-Yvette France
| |
Collapse
|
9
|
Luo Y, Peng Y, Liu W, Chen F, Wang B. Soluble Porous Coordination Frameworks Constructed from Inorganic Nanoparticles as Homogenized Heterogeneous Photocatalysts for Suzuki Coupling Reactions under Near-Infrared Light. Chemistry 2017; 23:8879-8885. [DOI: 10.1002/chem.201605794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Yuting Luo
- College of Chemistry and Chemical Engineering; Lanzhou University; 730000 Lanzhou P. R. China
| | - Yong Peng
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education; Lanzhou University; Lanzhou 730000 P. R. China
| | - Weisheng Liu
- College of Chemistry and Chemical Engineering; Lanzhou University; 730000 Lanzhou P. R. China
| | - Fengjuan Chen
- College of Chemistry and Chemical Engineering; Lanzhou University; 730000 Lanzhou P. R. China
| | - Baodui Wang
- College of Chemistry and Chemical Engineering; Lanzhou University; 730000 Lanzhou P. R. China
| |
Collapse
|
10
|
Faponle AS, Quesne MG, Sastri CV, Banse F, de Visser SP. Differences and comparisons of the properties and reactivities of iron(III)-hydroperoxo complexes with saturated coordination sphere. Chemistry 2015; 21:1221-36. [PMID: 25399782 PMCID: PMC4316188 DOI: 10.1002/chem.201404918] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/06/2022]
Abstract
Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)-oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)-hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)-hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)-hydroperoxo reacted directly with substrates or that an initial O-O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)-hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)-hydroperoxo complex with pentadentate ligand system (L5(2)). Direct C-O bond formation by an iron(III)-hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L5(2))Fe(III)(OOH)](2+) should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)-hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O-O bond, whereas a heterolytic O-O bond breaking in heme iron(III)-hydroperoxo is found.
Collapse
Affiliation(s)
- Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| | - Matthew G Quesne
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati781039, Assam (India)
| | - Frédéric Banse
- Institut de Chimie Moleculaire et des Materiaux d'Orsay, Laboratoire de Chimie Inorganique, Université Paris-Sud11 91405 Orsay Cedex (France) E-mail:
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| |
Collapse
|
11
|
Yuan G, Zhang G, Zhou Y, Yang F. Synergetic adsorption and catalytic oxidation performance originating from leafy graphite nanosheet anchored iron(ii) phthalocyanine nanorods for efficient organic dye degradation. RSC Adv 2015. [DOI: 10.1039/c4ra16530f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Leafy graphite nanosheet anchored iron(ii) phthalocyanine nanorods (FePc@LGNS) were facilely synthesized without using a complex covalent anchoring procedure.
Collapse
Affiliation(s)
- Guangén Yuan
- Key Laboratory of Industrial Ecology and Environmental Engineering
- Ministry of Education
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116023
| | - Guoquan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering
- Ministry of Education
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116023
| | - Yufei Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering
- Ministry of Education
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116023
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering
- Ministry of Education
- School of Environmental Science and Technology
- Dalian University of Technology
- Dalian 116023
| |
Collapse
|
12
|
Wei PJ, Yu GQ, Naruta Y, Liu JG. Covalent Grafting of Carbon Nanotubes with a Biomimetic Heme Model Compound To Enhance Oxygen Reduction Reactions. Angew Chem Int Ed Engl 2014; 53:6659-63. [DOI: 10.1002/anie.201403133] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/15/2014] [Indexed: 12/28/2022]
|
13
|
Wei PJ, Yu GQ, Naruta Y, Liu JG. Covalent Grafting of Carbon Nanotubes with a Biomimetic Heme Model Compound To Enhance Oxygen Reduction Reactions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403133] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Franke A, Fertinger C, van Eldik R. Axial Ligand and Spin-State Influence on the Formation and Reactivity of Hydroperoxo-Iron(III) Porphyrin Complexes. Chemistry 2012; 18:6935-49. [DOI: 10.1002/chem.201103036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/29/2011] [Indexed: 11/12/2022]
|
15
|
Kieber-Emmons MT, Qayyum MF, Li Y, Halime Z, Hodgson KO, Hedman B, Karlin KD, Solomon EI. Spectroscopic elucidation of a new heme/copper dioxygen structure type: implications for O···O bond rupture in cytochrome c oxidase. Angew Chem Int Ed Engl 2011; 51:168-72. [PMID: 22095556 DOI: 10.1002/anie.201104080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/24/2011] [Indexed: 11/11/2022]
|
16
|
Kieber-Emmons MT, Qayyum MF, Li Y, Halime Z, Hodgson KO, Hedman B, Karlin KD, Solomon EI. Spectroscopic Elucidation of a New Heme/Copper Dioxygen Structure Type: Implications for O⋅⋅⋅O Bond Rupture in Cytochrome c Oxidase. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Yeo BS, Klaus SL, Ross PN, Mathies RA, Bell AT. Identification of hydroperoxy species as reaction intermediates in the electrochemical evolution of oxygen on gold. Chemphyschem 2010; 11:1854-7. [PMID: 20473978 DOI: 10.1002/cphc.201000294] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Boon Siang Yeo
- Department of Chemical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
18
|
de Visser S, Valentine J, Nam W. Ein biomimetisches Hydroperoxo-Eisen(III)-Porphyrin-Intermediat. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906736] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
de Visser S, Valentine J, Nam W. A Biomimetic Ferric Hydroperoxo Porphyrin Intermediate. Angew Chem Int Ed Engl 2010; 49:2099-101. [DOI: 10.1002/anie.200906736] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|