1
|
Bao H, Chen Y, Yang X. Catalytic Asymmetric Synthesis of Axially Chiral Diaryl Ethers through Enantioselective Desymmetrization. Angew Chem Int Ed Engl 2023; 62:e202300481. [PMID: 36760025 DOI: 10.1002/anie.202300481] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid-catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3-benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2-benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene-containing diaryl ether atropisomers.
Collapse
Affiliation(s)
- Hanyang Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
2
|
Chen H, Liu W, Chang L, Kang Z, Yang Y, Zhang L. Tailoring Galactose Oxidase for Self-Powered Benzyl Alcohol Sensing. Chemistry 2023; 29:e202300052. [PMID: 36752160 DOI: 10.1002/chem.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Benzyl alcohol (BnOH) is a widely-used preservative in a variety of cosmetics, but the excess addition (≥1.0 %) may cause strong symptoms such as nausea, gastrointestinal irritation, convulsion, even death, making it crucial to monitor and control the addition quantity. Herein, we have developed a test-strip-like BnOH detection method via tailoring a galactose oxidase (GOase) towards BnOH oxidation and preparing a self-powered electrochromic strip for BnOH concentration visualization. A double-substituted GOase variant (Y329S/R330F), on the basis of the reported GOase M1 , has been obtained by semi-rational design with a 24.6-fold improved activity towards BnOH compared to GOase M1 . The GOase Y329S/R330F electrode has a response to BnOH with a linear range of 0.04 to 3.25 mM (R2 =0.9985), a sensitivity of 122.78 μA mM-1 cm-2 , and a detection limit of 0.03 mM (S/N=3). Coupling an electrochromic Prussian blue (PB) cathode helps the successful sensing visualization without any further power supply. The present sensing is more convenient and user-friendly than the generally used gas chromatography (GC) and high performance liquid chromatography (HPLC), and brings a more accessible solution to the field of quality controlling.
Collapse
Affiliation(s)
- Hongyu Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Hongqiao District, Tianjin, 300130, P. R. China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Avenue, Tianjin Airport Economic Area, Tianjin, P. R. China
| | - Weisong Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Avenue, Tianjin Airport Economic Area, Tianjin, P. R. China.,University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Lijing Chang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Avenue, Tianjin Airport Economic Area, Tianjin, P. R. China
| | - Zepeng Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Avenue, Tianjin Airport Economic Area, Tianjin, P. R. China
| | - Yanqin Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8, Guangrong Road, Hongqiao District, Tianjin, 300130, P. R. China
| | - Lingling Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Avenue, Tianjin Airport Economic Area, Tianjin, P. R. China.,University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Dai L, Liu Y, Xu Q, Wang M, Zhu Q, Yu P, Zhong G, Zeng X. A Dynamic Kinetic Resolution Approach to Axially Chiral Diaryl Ethers by Catalytic Atroposelective Transfer Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202216534. [PMID: 36536515 DOI: 10.1002/anie.202216534] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Diaryl ethers are widespread in biologically active compounds, ligands and catalysts. It is known that the diaryl ether skeleton may exhibit atropisomerism when both aryl rings are unsymmetrically substituted with bulky groups. Despite recent advances, only very few catalytic asymmetric methods have been developed to construct such axially chiral compounds. We describe herein a dynamic kinetic resolution approach to axially chiral diaryl ethers via a Brønsted acid catalyzed atroposelective transfer hydrogenation (ATH) reaction of dicarbaldehydes with anilines. The desired diaryl ethers could be obtained in moderate to good chemical yields (up to 79 %) and high enantioselectivities (up to 95 % ee) under standard reaction conditions. Such structural motifs are interesting precursors for further transformations and may have potential applications in the synthesis of chiral ligands or catalysts.
Collapse
Affiliation(s)
- Linlong Dai
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China.,Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Yuheng Liu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qing Xu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Meifang Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qiaohong Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Peiyuan Yu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Guofu Zhong
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
4
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
5
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
6
|
Herter S, McKenna SM, Frazer AR, Leimkühler S, Carnell AJ, Turner NJ. Galactose Oxidase Variants for the Oxidation of Amino Alcohols in Enzyme Cascade Synthesis. ChemCatChem 2015. [DOI: 10.1002/cctc.201500218] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Bai XF, Song T, Xu Z, Xia CG, Huang WS, Xu LW. Aromatic Amide-Derived Non-Biaryl Atropisomers as Highly Efficient Ligands in Silver-Catalyzed Asymmetric Cycloaddition Reactions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Bai XF, Song T, Xu Z, Xia CG, Huang WS, Xu LW. Aromatic Amide-Derived Non-Biaryl Atropisomers as Highly Efficient Ligands in Silver-Catalyzed Asymmetric Cycloaddition Reactions. Angew Chem Int Ed Engl 2015; 54:5255-9. [DOI: 10.1002/anie.201501100] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/14/2022]
|
9
|
Staniland S, Yuan B, Giménez-Agulló N, Marcelli T, Willies SC, Grainger DM, Turner NJ, Clayden J. Enzymatic desymmetrising redox reactions for the asymmetric synthesis of biaryl atropisomers. Chemistry 2014; 20:13084-8. [PMID: 25156181 PMCID: PMC4497317 DOI: 10.1002/chem.201404509] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 12/02/2022]
Abstract
Atropisomeric biaryls carrying ortho-hydroxymethyl and formyl groups were made enantioselectively by desymmetrisation of dialdehyde or diol substrates. The oxidation of the symmetrical diol substrates was achieved using a variant of galactose oxidase (GOase), and the reduction of the dialdehydes using a panel of ketoreductases. Either M or P enantiomers of the products could be formed, with absolute configurations assigned by time-dependent DFT calculations of circular dichroism spectra. The differing selectivities observed with different biaryl structures offer an insight into the detailed structure of the active site of the GOase enzyme.
Collapse
Affiliation(s)
- Samantha Staniland
- School of Chemistry, University of ManchesterOxford Road, Manchester M13 9PL (UK), Fax: (+44) 161-275-4939
| | - Bo Yuan
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology131 Princess Street, Manchester M1 7DN (UK), Fax: (+44) 161-275-1311
| | - Nelson Giménez-Agulló
- School of Chemistry, University of ManchesterOxford Road, Manchester M13 9PL (UK), Fax: (+44) 161-275-4939
| | - Tommaso Marcelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”Politecnico di Milano, via Mancinelli 7, 20131 Milano (Italy)
| | - Simon C Willies
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology131 Princess Street, Manchester M1 7DN (UK), Fax: (+44) 161-275-1311
| | - Damian M Grainger
- Johnson Matthey Catalysis and Chiral Technologies28 Science Park, Milton Road, Cambridge, CB4 0FP (UK)
| | - Nicholas J Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology131 Princess Street, Manchester M1 7DN (UK), Fax: (+44) 161-275-1311
| | - Jonathan Clayden
- School of Chemistry, University of ManchesterOxford Road, Manchester M13 9PL (UK), Fax: (+44) 161-275-4939
| |
Collapse
|
10
|
Armstrong RJ, Smith MD. Catalytic Enantioselective Synthesis of Atropisomeric Biaryls: A Cation-Directed Nucleophilic Aromatic Substitution Reaction. Angew Chem Int Ed Engl 2014; 53:12822-6. [DOI: 10.1002/anie.201408205] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 12/14/2022]
|
11
|
Armstrong RJ, Smith MD. Catalytic Enantioselective Synthesis of Atropisomeric Biaryls: A Cation-Directed Nucleophilic Aromatic Substitution Reaction. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408205] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
|
13
|
Hernández-Ortega A, Ferreira P, Merino P, Medina M, Guallar V, Martínez AT. Stereoselective Hydride Transfer by Aryl-Alcohol Oxidase, a Member of the GMC Superfamily. Chembiochem 2012; 13:427-35. [PMID: 22271643 DOI: 10.1002/cbic.201100709] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Aitor Hernández-Ortega
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Manzuna Sapu C, Bäckvall JE, Deska J. Enantioselective Enzymatic Desymmetrization of Prochiral Allenic Diols. Angew Chem Int Ed Engl 2011; 50:9731-4. [DOI: 10.1002/anie.201103227] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/16/2011] [Indexed: 11/09/2022]
|