1
|
Krömer M, Brunderová M, Ivancová I, Poštová Slavětínská L, Hocek M. 2-Formyl-dATP as Substrate for Polymerase Synthesis of Reactive DNA Bearing an Aldehyde Group in the Minor Groove. Chempluschem 2021; 85:1164-1170. [PMID: 32496002 DOI: 10.1002/cplu.202000287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/15/2020] [Indexed: 12/16/2022]
Abstract
2-Formyl-2'-deoxyadenosine triphosphate (dCHO ATP) was synthesized and tested as a substrate in enzymatic synthesis of DNA modified in the minor groove with a reactive aldehyde group. The multistep synthesis of dCHO ATP was based on the preparation of protected 2-dihydroxyethyl-2'-deoxyadenosine intemediate, which was triphosphorylated and converted to aldehyde through oxidative cleavage. The dCHO ATP triphosphate was a moderate substrate for KOD XL DNA polymerase, and was used for enzymatic synthesis of some sequences using primer extension (PEX). On the other hand, longer sequences (31-mer) with higher number of modifications, or sequences with modifications at adjacent positions did not give full extension. Single-nucleotide extension followed by PEX was used for site-specific incorporation of one aldehyde-linked adenosine into a longer 49-mer sequence. The reactive formyl group was used for cross-linking with peptides and proteins using reductive amination and for fluorescent labelling through oxime formation with an AlexaFluor647-linked hydroxylamine.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Mária Brunderová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Ivana Ivancová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| |
Collapse
|
2
|
Wang R, Jin X, Kong D, Chen Z, Liu J, Liu L, Cheng L. Visible‐Light Facilitated Fluorescence “Switch‐On” Labelling of 5‐Formylpyrimidine RNA. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rui‐Li Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Xiao‐Yang Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - De‐Long Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Zhi‐Gang Chen
- BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Ji Liu
- BNLMS, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology Guangzhou 510640 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
3
|
Wang Y, Liu C, Wu F, Zhang X, Liu S, Chen Z, Zeng W, Yang W, Zhang X, Zhou Y, Weng X, Wu Z, Zhou X. Highly Selective 5-Formyluracil Labeling and Genome-wide Mapping Using (2-Benzimidazolyl)Acetonitrile Probe. iScience 2018; 9:423-432. [PMID: 30466066 PMCID: PMC6249349 DOI: 10.1016/j.isci.2018.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/04/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023] Open
Abstract
Chemical modifications to nucleobases have a great influence on various cellular processes, by making gene regulation more complex, thus indicating their profound impact on aspects of heredity, growth, and disease. Here, we provide the first genome-wide map of 5-formyluracil (5fU) in living tissues and evaluate the potential roles for 5fU in genomics. We show that an azido derivative of (2-benzimidazolyl)acetonitrile has high selectivity for enriching 5fU-containing genomic DNA. The results have demonstrated the feasibility of using this method to determine the genome-wide distribution of 5fU. Intriguingly, most 5fU sites were found in intergenic regions and introns. Also, distribution of 5fU in human thyroid carcinoma tissues is positively correlated with binding sites of POLR2A protein, which indicates that 5fU may distributed around POLR2A-binding sites. The derivative of (2-benzimidazolyl)acetonitrile (azi-BIAN) can selectivity label 5fU Azi-BIAN can selectively label and pull down 5fU in the genome for NGS The first genome-wide map of 5fU in mammalian genomic DNA 5fU is highly enriched at intergenic regions and introns
Collapse
Affiliation(s)
- Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Chaoxing Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Fan Wu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Sheng Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, School of Medicine, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zonggui Chen
- College of Life Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Weiwu Zeng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiaolian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, School of Medicine, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yu Zhou
- College of Life Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zhiguo Wu
- College of Life Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| |
Collapse
|
4
|
|
5
|
Liu C, Zou G, Peng S, Wang Y, Yang W, Wu F, Jiang Z, Zhang X, Zhou X. 5-Formyluracil as a Multifunctional Building Block in Biosensor Designs. Angew Chem Int Ed Engl 2018; 57:9689-9693. [DOI: 10.1002/anie.201804007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/27/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Chaoxing Liu
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Wei Yang
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Fan Wu
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Zhuoran Jiang
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| |
Collapse
|
6
|
Krömer M, Bártová K, Raindlová V, Hocek M. Synthesis of Dihydroxyalkynyl and Dihydroxyalkyl Nucleotides as Building Blocks or Precursors for Introduction of Diol or Aldehyde Groups to DNA for Bioconjugations. Chemistry 2018; 24:11890-11894. [PMID: 29790604 DOI: 10.1002/chem.201802282] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 01/18/2023]
Abstract
(3,4-Dihydroxybut-1-ynyl)uracil, -cytosine and -7-deazaadenine 2'-deoxyribonucleoside triphosphates (dNTPs) were prepared by direct aqueous Sonogashira cross-coupling of halogenated dNTPs with dihydroxybut-1-yne and converted to 3,4-dihydroxybutyl dNTPs through catalytic hydrogenation. Sodium periodate oxidative cleavage of dihydroxybutyl-dUTP gave the desired aliphatic aldehyde-linked dUTP, whereas the oxidative cleavage of the corresponding deazaadenine dNTP gave a cyclic aminal. All dihydroxyalkyl or -alkynyl dNTPs and the formylethyl-dUTP were good substrates for DNA polymerases and were used for synthesis of diol- or aldehyde-linked DNA. The aldehyde linked DNA was used for the labelling or bioconjugations through hydrazone formation or reductive aminations.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
7
|
Zhou Q, Li K, Liu YH, Li LL, Yu KK, Zhang H, Yu XQ. Fluorescent Wittig reagent as a novel ratiometric probe for the quantification of 5-formyluracil and its application in cell imaging. Chem Commun (Camb) 2018; 54:13722-13725. [DOI: 10.1039/c8cc07541g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For the first time a Wittig reagent was introduced into the design of a fluorescent probe for the quantification of 5-formyluracil.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University
- Chengdu 610064
- P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University
- Chengdu 610064
- P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University
- Chengdu 610064
- P. R. China
| | - Ling-Ling Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University
- Chengdu 610064
- P. R. China
| | - Kang-Kang Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University
- Chengdu 610064
- P. R. China
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
8
|
Samanta B, Seikowski J, Höbartner C. Fluorogenic Labeling of 5-Formylpyrimidine Nucleotides in DNA and RNA. Angew Chem Int Ed Engl 2015; 55:1912-6. [PMID: 26679556 DOI: 10.1002/anie.201508893] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 01/13/2023]
Abstract
5-Formylcytosine (5fC) and 5-formyluracil (5fU) are natural nucleobase modifications that are generated by oxidative modification of 5-methylcytosine and thymine (or 5-methyluracil). Herein, we describe chemoselective labeling of 5-formylpyrimidine nucleotides in DNA and RNA by fluorogenic aldol-type condensation reactions with 2,3,3-trimethylindole derivatives. Mild and specific reaction conditions were developed for 5fU and 5fC to produce hemicyanine-like chromophores with distinct photophysical properties. Residue-specific detection was established by fluorescence readout as well as primer-extension assays. The reactions were optimized on DNA oligonucleotides and were equally suitable for the modification of 5fU- and 5fC-modified RNA. This direct labeling approach of 5-formylpyrimidines is expected to help in elucidating the occurrence, enzymatic transformations, and functional roles of these epigenetic/epitranscriptomic nucleobase modifications in DNA and RNA.
Collapse
Affiliation(s)
- Biswajit Samanta
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Jan Seikowski
- Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Claudia Höbartner
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany. .,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany. .,Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
9
|
|
10
|
Kanamori T, Ohzeki H, Masaki Y, Ohkubo A, Takahashi M, Tsuda K, Ito T, Shirouzu M, Kuwasako K, Muto Y, Sekine M, Seio K. Controlling the fluorescence of benzofuran-modified uracil residues in oligonucleotides by triple-helix formation. Chembiochem 2014; 16:167-76. [PMID: 25469677 DOI: 10.1002/cbic.201402346] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 12/16/2022]
Abstract
We developed fluorescent turn-on probes containing a fluorescent nucleoside, 5-(benzofuran-2-yl)deoxyuridine (dU(BF)) or 5-(3-methylbenzofuran-2-yl)deoxyuridine (dU(MBF)), for the detection of single-stranded DNA or RNA by utilizing DNA triplex formation. Fluorescence measurements revealed that the probe containing dU(MBF) achieved superior fluorescence enhancement than that containing dU(BF). NMR and fluorescence analyses indicated that the fluorescence intensity increased upon triplex formation partly as a consequence of a conformational change at the bond between the 3-methylbenzofuran and uracil rings. In addition, it is suggested that the microenvironment around the 3-methylbenzofuran ring contributed to the fluorescence enhancement. Further, we developed a method for detecting RNA by rolling circular amplification in combination with triplex-induced fluorescence enhancement of the oligonucleotide probe containing dU(MBF).
Collapse
Affiliation(s)
- Takashi Kanamori
- Education Academy of Computational Life Sciences, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501 (Japan)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tanpure AA, Srivatsan SG. Synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue based on the Lucifer chromophore. Chembiochem 2014; 15:1309-16. [PMID: 24861713 DOI: 10.1002/cbic.201402052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 11/10/2022]
Abstract
The majority of fluorescent nucleoside analogues used in nucleic acid studies have excitation maxima in the UV region and show very low fluorescence within oligonucleotides (ONs); hence, they cannot be utilised with certain fluorescence methods and for cell-based analysis. Here, we describe the synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue, derived by attaching a Lucifer chromophore (1,8-naphthalimide core) at the 5-position of uracil. The emissive nucleoside displays excitation and emission maxima in the visible region and exhibits high quantum yield. Importantly, when incorporated into ON duplexes it retains appreciable fluorescence efficiency and is sensitive to the neighbouring base environment. Notably, the nucleoside signals the presence of purine repeats in ON duplexes with an enhancement in fluorescence intensity, a property rarely displayed by other nucleoside analogues.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)
| | | |
Collapse
|
12
|
Tanpure AA, Srivatsan SG. Synthesis and photophysical characterisation of a fluorescent nucleoside analogue that signals the presence of an abasic site in RNA. Chembiochem 2012; 13:2392-9. [PMID: 23070860 DOI: 10.1002/cbic.201200408] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 11/07/2022]
Abstract
The synthesis and site-specific incorporation of an environment-sensitive fluorescent nucleoside analogue (2), based on a 5-(benzofuran-2-yl)pyrimidine core, into DNA oligonucleotides (ONs), and its photophysical properties within these ONs are described. Interestingly and unlike 2-aminopurine (a widely used nucleoside analogue probe), when incorporated into an ON and hybridised with a complementary ON, the emissive nucleoside 2 displays significantly higher emission intensity than the free nucleoside. Furthermore, photophysical characterisation shows that the fluorescence properties of the nucleoside analogue within ONs are significantly influenced by flanking bases, especially by guanosine. By utilising the responsiveness of the nucleoside to changes in base environment, a DNA ON reporter labelled with the emissive nucleoside 2 was constructed; this signalled the presence of an abasic site in a model depurinated sarcin/ricin RNA motif of a eukaryotic 28S rRNA.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr. Homi Bhabha Road, Pune 411008, India
| | | |
Collapse
|
13
|
Raindlová V, Pohl R, Hocek M. Synthesis of aldehyde-linked nucleotides and DNA and their bioconjugations with lysine and peptides through reductive amination. Chemistry 2012; 18:4080-7. [PMID: 22337599 DOI: 10.1002/chem.201103270] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Indexed: 11/06/2022]
Abstract
5-(5-Formylthienyl)-, 5-(4-formylphenyl)- and 5-(2-fluoro-5-formylphenyl)cytosine 2'-deoxyribonucleoside mono- (dC(R)MP) and triphosphates (dC(R)TP) were prepared by aqueous Suzuki-Miyaura cross-coupling of 5-iodocytosine nucleotides with the corresponding formylarylboronic acids. The dC(R)TPs were excellent substrates for DNA polymerases and were incorporated into DNA by primer extension or PCR. Reductive aminations of the model dC(R)MPs with lysine or lysine-containing tripeptide were studied and optimized. In aqueous phosphate buffer (pH 6.7) the yields of the reductive aminations with tripeptide III were up to 25 %. Bioconjugation of an aldehyde-containing DNA with a lysine-containing tripeptide was achieved through reductive amination in yields of up to 90 % in aqueous phosphate buffer.
Collapse
Affiliation(s)
- Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
14
|
Tanpure AA, Srivatsan SG. A microenvironment-sensitive fluorescent pyrimidine ribonucleoside analogue: synthesis, enzymatic incorporation, and fluorescence detection of a DNA abasic site. Chemistry 2011; 17:12820-7. [PMID: 21956450 DOI: 10.1002/chem.201101194] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/18/2011] [Indexed: 11/10/2022]
Abstract
Base-modified fluorescent ribonucleoside-analogue probes are valuable tools in monitoring RNA structure and function because they closely resemble the structure of natural nucleobases. Especially, 2-aminopurine, a highly environment-sensitive adenosine analogue, is the most extensively utilized fluorescent nucleoside analogue. However, only a few isosteric pyrimidine ribonucleoside analogues that are suitable for probing the structure and recognition properties of RNA molecules are available. Herein, we describe the synthesis and photophysical characterization of a small series of base-modified pyrimidine ribonucleoside analogues derived from tagging indole, N-methylindole, and benzofuran onto the 5-position of uracil. One of the analogues, based on a 5-(benzofuran-2-yl)pyrimidine core, shows emission in the visible region with a reasonable quantum yield and, importantly, displays excellent solvatochromism. The corresponding triphosphate substrate is effectively incorporated into oligoribonucleotides by T7 RNA polymerase to produce fluorescent oligoribonucleotide constructs. Steady-state and time-resolved spectroscopic studies with fluorescent oligoribonucleotide constructs demonstrate that the fluorescent ribonucleoside photophysically responds to subtle changes in its environment brought about by the interaction of the chromophore with neighboring bases. In particular, the emissive ribonucleoside, if incorporated into an oligoribonucleotide, positively reports the presence of a DNA abasic site with an appreciable enhancement in fluorescence intensity. The straightforward synthesis, amicability to enzymatic incorporation, and sensitivity to changes in the microenvironment highlight the potential of the benzofuran-conjugated pyrimidine ribonucleoside as an efficient fluorescent probe to investigate nucleic acid structure, dynamics, and recognition events.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, Pashan, Pune, India
| | | |
Collapse
|
15
|
Sato K, Sasaki A, Matsuda A. Highly fluorescent 5-(5,6-dimethoxybenzothiazol-2-yl)-2'-deoxyuridine 5'-triphosphate as an efficient substrate for DNA polymerases. Chembiochem 2011; 12:2341-6. [PMID: 21887841 DOI: 10.1002/cbic.201100452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Indexed: 11/08/2022]
Abstract
We herein describe the synthesis of fluorescent 5-(5,6-dimethoxybenzothiazol-2-yl)-2'-deoxyuridine 5'-triphosphate (d(bt)UTP) and primer extension reactions using d(bt)UTP. We also carried out primer extension reactions using the (bt)U template. B family DNA polymerases, such as KOD, Deep Vent (exo-), and 9°N(m) DNA polymerases, were effective for elongation with d(bt)UTP. Deep Vent (exo-) and KOD DNA polymerases have excellent fidelity for incorporating d(bt)UTP only at the site opposite the adenine template and only dATP when using the (bt)U template. Therefore, d(bt)UTP is an excellent fluorescent nucleotide that can be incorporated into DNA by DNA polymerases.
Collapse
Affiliation(s)
- Kousuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Sapporo 060-0812, Japan
| | | | | |
Collapse
|