1
|
Yuan M, Abdellaoui S, Chen H, Kummer MJ, Malapit CA, You C, Minteer SD. Selective Electroenzymatic Oxyfunctionalization by Alkane Monooxygenase in a Biofuel Cell. Angew Chem Int Ed Engl 2020; 59:8969-8973. [PMID: 32198829 DOI: 10.1002/anie.202003032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 11/10/2022]
Abstract
Aliphatic synthetic intermediates with high added value are generally produced from alkane sources (e.g., petroleum) by inert carbon-hydrogen (C-H) bond activation using classical chemical methods (i.e. high temperature, rare metals). As an alternative approach for these reactions, alkane monooxygenase from Pseudomonas putida (alkB) is able to catalyze the difficult terminal oxyfunctionalization of alkanes selectively and under mild conditions. Herein, we report an electrosynthetic system using an alkB biocathode which produces alcohols, epoxides, and sulfoxides through bioelectrochemical hydroxylation, epoxidation, sulfoxidation, and demethylation. The capacity of the alkB binding pocket to protect internal functional groups is also demonstrated. By coupling our alkB biocathode with a hydrogenase bioanode and using H2 as a clean fuel source, we have developed and characterized a series of enzymatic fuel cells capable of oxyfunctionalization while simultaneously producing electricity.
Collapse
Affiliation(s)
- Mengwei Yuan
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Sofiene Abdellaoui
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA.,Current address: Université de Reims Champagne-Ardenne, INRAE, FARE Laboratory, 51100, Reims, France
| | - Hui Chen
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Matthew J Kummer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Christian A Malapit
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| |
Collapse
|
2
|
Yuan M, Abdellaoui S, Chen H, Kummer MJ, Malapit CA, You C, Minteer SD. Selective Electroenzymatic Oxyfunctionalization by Alkane Monooxygenase in a Biofuel Cell. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mengwei Yuan
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Sofiene Abdellaoui
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
- Current address: Université de Reims Champagne-Ardenne INRAE, FARE Laboratory 51100 Reims France
| | - Hui Chen
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Matthew J. Kummer
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Christian A. Malapit
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Chun You
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Shelley D. Minteer
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| |
Collapse
|
3
|
Greule A, Stok JE, De Voss JJ, Cryle MJ. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 2019; 35:757-791. [PMID: 29667657 DOI: 10.1039/c7np00063d] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2000 up to 2018 The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways.
Collapse
Affiliation(s)
- Anja Greule
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Abstract
Enzyme catalyzed reactions are rapidly becoming an invaluable tool for the synthesis of many active pharmaceutical ingredients. These reactions are commonly performed in batch, but continuous biocatalysis is gaining interest in industry because it would allow seamless integration of chemical and enzymatic reaction steps. However, because this is an emerging field, little attention has been paid towards the suitability of different reactor types for continuous biocatalytic reactions. Two types of continuous flow reactor are possible: continuous stirred tank and continuous plug-flow. These reactor types differ in a number of ways, but in this contribution, we focus on residence time distribution and how enzyme kinetics are affected by the unique mass balance of each reactor. For the first time, we present a tool to facilitate reactor selection for continuous biocatalytic production of pharmaceuticals. From this analysis, it was found that plug-flow reactors should generally be the system of choice. However, there are particular cases where they may need to be coupled with a continuous stirred tank reactor or replaced entirely by a series of continuous stirred tank reactors, which can approximate plug-flow behavior. This systematic approach should accelerate the implementation of biocatalysis for continuous pharmaceutical production.
Collapse
|
5
|
Notonier S, Gricman Ł, Pleiss J, Hauer B. Semirational Protein Engineering of CYP153AM.aq. -CPRBM3 for Efficient Terminal Hydroxylation of Short- to Long-Chain Fatty Acids. Chembiochem 2016; 17:1550-7. [PMID: 27251775 DOI: 10.1002/cbic.201600207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Indexed: 11/07/2022]
Abstract
The regioselective terminal hydroxylation of alkanes and fatty acids is of great interest in a variety of industrial applications, such as in cosmetics, in fine chemicals, and in the fragrance industry. The chemically challenging activation and oxidation of non-activated C-H bonds can be achieved with cytochrome P450 enzymes. CYP153AM.aq. -CPRBM3 is an artificial fusion construct consisting of the heme domain from Marinobacter aquaeolei and the reductase domain of CYP102A1 from Bacillus megaterium. It has the ability to hydroxylate medium- and long-chain fatty acids selectively at their terminal positions. However, the activity of this interesting P450 construct needs to be improved for applications in industrial processes. For this purpose, the design of mutant libraries including two consecutive steps of mutagenesis is demonstrated. Targeted positions and residues chosen for substitution were based on semi-rational protein design after creation of a homology model of the heme domain of CYP153AM.aq. , sequence alignments, and docking studies. Site-directed mutagenesis was the preferred method employed to address positions within the binding pocket, whereas diversity was created with the aid of a degenerate codon for amino acids located at the substrate entrance channel. Combining the successful variants led to the identification of a double variant-G307A/S233G-that showed alterations of one position within the binding pocket and one position located in the substrate access channel. This double variant showed twofold increased activity relative to the wild type for the terminal hydroxylation of medium-chain-length fatty acids. This variant furthermore showed improved activity towards short- and long-chain fatty acids and enhanced stability in the presence of higher concentrations of fatty acids.
Collapse
Affiliation(s)
- Sandra Notonier
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Łukasz Gricman
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Bernhard Hauer
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
6
|
Ni Y, Fernández-Fueyo E, Baraibar AG, Ullrich R, Hofrichter M, Yanase H, Alcalde M, van Berkel WJH, Hollmann F. Peroxygenase-katalysierte Oxyfunktionalisierung angetrieben durch Methanoloxidation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507881] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Ni Y, Fernández-Fueyo E, Baraibar AG, Ullrich R, Hofrichter M, Yanase H, Alcalde M, van Berkel WJH, Hollmann F. Peroxygenase-Catalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol. Angew Chem Int Ed Engl 2015; 55:798-801. [DOI: 10.1002/anie.201507881] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Indexed: 11/05/2022]
|
8
|
Lundemo MT, Notonier S, Striedner G, Hauer B, Woodley JM. Process limitations of a whole-cell P450 catalyzed reaction using a CYP153A-CPR fusion construct expressed in Escherichia coli. Appl Microbiol Biotechnol 2015; 100:1197-1208. [DOI: 10.1007/s00253-015-6999-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/23/2015] [Accepted: 09/10/2015] [Indexed: 01/05/2023]
|
9
|
Guidelines for development and implementation of biocatalytic P450 processes. Appl Microbiol Biotechnol 2015; 99:2465-83. [PMID: 25652652 DOI: 10.1007/s00253-015-6403-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/17/2023]
Abstract
Biocatalytic reactions performed by cytochrome P450 monooxygenases are interesting in pharmaceutical research since they are involved in human drug metabolism. Furthermore, they are potentially interesting as biocatalysts for synthetic chemistry because of the exquisite selectivity of the chemistry they undertake. For example, selective hydroxylation can be undertaken on a highly functionalized molecule without the need for functional group protection. Recent progress in the discovery of novel P450s as well as protein engineering of these enzymes strongly encourages further development of their application, including use in synthetic processes. The biological characteristics of P450s (e.g., cofactor dependence) motivate the use of whole-cell systems for synthetic processes, and those processes implemented in industry are so far dominated by growing cells and native host systems. However, for an economically feasible process, the expression of P450 systems in a heterologous host with sufficient biocatalyst yield (g/g cdw) for non-growing systems or space-time yield (g/L/h) for growing systems remains a major challenge. This review summarizes the opportunities to improve P450 whole-cell processes and strategies in order to apply and implement them in industrial processes, both from a biological and process perspective. Indeed, a combined approach of host selection and cell engineering, integrated with process engineering, is suggested as the most effective route to implementation.
Collapse
|
10
|
Pennec A, Jacobs CL, Opperman DJ, Smit MS. Revisiting Cytochrome P450-Mediated Oxyfunctionalization of Linear and Cyclic Alkanes. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Kolev JN, Zaengle JM, Ravikumar R, Fasan R. Enhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis. Chembiochem 2014; 15:1001-10. [PMID: 24692265 DOI: 10.1002/cbic.201400060] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Indexed: 01/28/2023]
Abstract
The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. We have investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. Four unnatural amino acids with diverse aromatic side chains were incorporated at 11 active-site positions of a substrate-promiscuous CYP102A1 variant. The resulting "uP450s" were then tested for their catalytic activity and regioselectivity in the oxidation of two representative substrates: a small-molecule drug and a natural product. Large shifts in regioselectivity resulted from these single mutations, and in particular, for para-acetyl-Phe substitutions at positions close to the heme cofactor. Screening this mini library of uP450s enabled us to identify P450 catalysts for the selective hydroxylation of four aliphatic positions in the target substrates, including a C(sp(3))-H site not oxidized by the parent enzyme. Furthermore, we discovered a general activity-enhancing effect of active-site substitutions involving the unnatural amino acid para-amino-Phe, which resulted in P450 catalysts capable of supporting the highest total turnover number reported to date on a complex molecule (34,650). The functional changes induced by the unnatural amino acids could not be reproduced by any of the 20 natural amino acids. This study thus demonstrates that unnatural amino acid mutagenesis constitutes a promising new strategy for improving the catalytic activity and regioselectivity of P450 oxidation catalysts.
Collapse
Affiliation(s)
- Joshua N Kolev
- Department of Chemistry, University of Rochester, Hutchison Hall, Rochester, NY 14620 (USA)
| | | | | | | |
Collapse
|
12
|
Vallon T, Glemser M, Malca S, Scheps D, Schmid J, Siemann-Herzberg M, Hauer B, Takors R. Production of 1-Octanol fromn-Octane byPseudomonas putidaKT2440. CHEM-ING-TECH 2013. [DOI: 10.1002/cite.201200178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Olaofe OA, Fenner CJ, Gudiminchi RK, Smit MS, Harrison STL. The influence of microbial physiology on biocatalyst activity and efficiency in the terminal hydroxylation of n-octane using Escherichia coli expressing the alkane hydroxylase, CYP153A6. Microb Cell Fact 2013; 12:8. [PMID: 23351575 PMCID: PMC3598389 DOI: 10.1186/1475-2859-12-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biocatalyst improvement through molecular and recombinant means should be complemented with efficient process design to facilitate process feasibility and improve process economics. This study focused on understanding the bioprocess limitations to identify factors that impact the expression of the terminal hydroxylase CYP153A6 and also influence the biocatalytic transformation of n-octane to 1-octanol using resting whole cells of recombinant E. coli expressing the CYP153A6 operon which includes the ferredoxin (Fdx) and the ferredoxin reductase (FdR). RESULTS Specific hydroxylation activity decreased with increasing protein expression showing that the concentration of active biocatalyst is not the sole determinant of optimum process efficiency. Process physiological conditions including the medium composition, temperature, glucose metabolism and product toxicity were investigated. A fed-batch system with intermittent glucose feeding was necessary to ease overflow metabolism and improve process efficiency while the introduction of a product sink (BEHP) was required to alleviate octanol toxicity. Resting cells cultivated on complex LB and glucose-based defined medium with similar CYP level (0.20 μmol gDCW-1) showed different biocatalyst activity and efficiency in the hydroxylation of octane over a period of 120 h. This was influenced by differing glucose uptake rate which is directly coupled to cofactor regeneration and cell energy in whole cell biocatalysis. The maximum activity and biocatalyst efficiency achieved presents a significant improvement in the use of CYP153A6 for alkane activation. This biocatalyst system shows potential to improve productivity if substrate transfer limitation across the cell membrane and enzyme stability can be addressed especially at higher temperature. CONCLUSION This study emphasises that the overall process efficiency is primarily dependent on the interaction between the whole cell biocatalyst and bioprocess conditions.
Collapse
Affiliation(s)
- Oluwafemi A Olaofe
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
14
|
Staudt S, Burda E, Giese C, Müller CA, Marienhagen J, Schwaneberg U, Hummel W, Drauz K, Gröger H. Direktoxidation von Cycloalkanen zu Cycloalkanonen mit Sauerstoff in Wasser. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201204464] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Staudt S, Burda E, Giese C, Müller CA, Marienhagen J, Schwaneberg U, Hummel W, Drauz K, Gröger H. Direct Oxidation of Cycloalkanes to Cycloalkanones with Oxygen in Water. Angew Chem Int Ed Engl 2013; 52:2359-63. [DOI: 10.1002/anie.201204464] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/31/2012] [Indexed: 11/07/2022]
|
16
|
Bordeaux M, Galarneau A, Drone J. Catalytic, Mild, and Selective Oxyfunctionalization of Linear Alkanes: Current Challenges. Angew Chem Int Ed Engl 2012; 51:10712-23. [DOI: 10.1002/anie.201203280] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Indexed: 02/02/2023]
|
17
|
Bordeaux M, Galarneau A, Drone J. Katalytische, milde und selektive Oxyfunktionalisierung von linearen Alkanen: aktuelle Herausforderungen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203280] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Whole-cell hydroxylation of n-octane by Escherichia coli strains expressing the CYP153A6 operon. Appl Microbiol Biotechnol 2012; 96:1507-16. [PMID: 22410745 DOI: 10.1007/s00253-012-3984-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/11/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
CYP153A6 is a well-studied terminal alkane hydroxylase which has previously been expressed in Pseudomonas putida and Escherichia coli by using the pCom8 plasmid. In this study, CYP153A6 was successfully expressed in E. coli BL21(DE3) by cloning the complete operon from Mycobacterium sp. HXN-1500, also encoding the ferredoxin reductase and ferredoxin, into pET28b(+). LB medium with IPTG as well as auto-induction medium was used to express the proteins under the T7 promoter. A maximum concentration of 1.85 μM of active CYP153A6 was obtained when using auto-induction medium, while with IPTG induction of LB cultures, the P450 concentration peaked at 0.6-0.8 μM. Since more biomass was produced in auto-induction medium, the specific P450 content was often almost the same, 0.5-1.0 μmol P450 g (DCW)⁻¹, for both methods. Analytical scale whole-cell biotransformations of n-octane were conducted with resting cells, and it was found that high P450 content in biomass did not necessarily result in high octanol production. Whole cells from LB cultures induced with IPTG gave higher specific and volumetric octanol formation rates than biomass from auto-induction medium. A maximum of 8.7 g octanol L (BRM)⁻¹ was obtained within 24 h (0.34 g L (BRM)⁻¹ h⁻¹) with IPTG-induced cells containing only 0.20 μmol P450 g (DCW)⁻¹, when glucose (22 g L (BRM)⁻¹) was added for cofactor regeneration.
Collapse
|
19
|
Churakova E, Kluge M, Ullrich R, Arends I, Hofrichter M, Hollmann F. Specific Photobiocatalytic Oxyfunctionalization Reactions. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105308] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Churakova E, Kluge M, Ullrich R, Arends I, Hofrichter M, Hollmann F. Specific Photobiocatalytic Oxyfunctionalization Reactions. Angew Chem Int Ed Engl 2011; 50:10716-9. [DOI: 10.1002/anie.201105308] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Indexed: 11/11/2022]
|