1
|
Tang H, Li Q, Yan W, Jiang X. Reversing the Chirality of Surface Ligands Can Improve the Biosafety and Pharmacokinetics of Cationic Gold Nanoclusters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hao Tang
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Qizhen Li
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Weixiao Yan
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Rd, Nanshan District Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
2
|
Tang H, Li Q, Yan W, Jiang X. Reversing the Chirality of Surface Ligands Can Improve the Biosafety and Pharmacokinetics of Cationic Gold Nanoclusters. Angew Chem Int Ed Engl 2021; 60:13829-13834. [PMID: 33755292 DOI: 10.1002/anie.202101609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Severe toxicity and rapid in vivo clearance of cationic nanomaterials seriously hinder their clinical translation. Present strategies to improve the biosafety and in vivo performance of cationic nanomaterials require neutralization of positive charge, which often compromises their efficacy. Herein, we report that substituting L-glutathione (L-GSH) on cationic gold nanoclusters (GNCs) with its D-counterpart can effectively improve the biosafety and pharmacokinetics. Compared with L-GNCs, D-GNCs do not exhibit cellular cytotoxicity, hemolysis, or acute damage to organs. Cationic D-GNCs show less cell internalization than L-GNCs, and do not induce cellular apoptosis. In vivo, the chirality of surface ligands distinctly affects the pharmacokinetics and tumor targeting abilities of D-/L-GNCs. D-GNCs show higher extended circulation time in blood plasma compared to similarly-sized and poly (ethylene glycol)-modified gold nanoparticles. This work demonstrates that the choice of chirality of surface ligands can determine toxicities and pharmacokinetics of cationic nanomaterials.
Collapse
Affiliation(s)
- Hao Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Qizhen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Weixiao Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
3
|
Li S, Sun M, Hao C, Qu A, Wu X, Xu L, Xu C, Kuang H. Chiral Cu
x
Co
y
S Nanoparticles under Magnetic Field and NIR Light to Eliminate Senescent Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Si Li
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Changlong Hao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Aihua Qu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Xiaoling Wu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| |
Collapse
|
4
|
Li S, Sun M, Hao C, Qu A, Wu X, Xu L, Xu C, Kuang H. Chiral Cu
x
Co
y
S Nanoparticles under Magnetic Field and NIR Light to Eliminate Senescent Cells. Angew Chem Int Ed Engl 2020; 59:13915-13922. [DOI: 10.1002/anie.202004575] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/03/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Si Li
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Changlong Hao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Aihua Qu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Xiaoling Wu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| |
Collapse
|
5
|
Zhang M, Dong X, Wang Z, Li H, Li S, Zhao X, Zang S. AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908909] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Miao‐Miao Zhang
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Xi‐Yan Dong
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
- College of Chemistry and Chemical EngineeringHenan Polytechnic University Jiaozuo 454000 China
| | - Zhao‐Yang Wang
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Hai‐Yang Li
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Shi‐Jun Li
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Xueli Zhao
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Shuang‐Quan Zang
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
6
|
Zhang M, Dong X, Wang Z, Li H, Li S, Zhao X, Zang S. AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. Angew Chem Int Ed Engl 2019; 59:10052-10058. [DOI: 10.1002/anie.201908909] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Miao‐Miao Zhang
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Xi‐Yan Dong
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
- College of Chemistry and Chemical EngineeringHenan Polytechnic University Jiaozuo 454000 China
| | - Zhao‐Yang Wang
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Hai‐Yang Li
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Shi‐Jun Li
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Xueli Zhao
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Shuang‐Quan Zang
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
7
|
Li F, Li Y, Yang X, Han X, Jiao Y, Wei T, Yang D, Xu H, Nie G. Highly Fluorescent Chiral N-S-Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712453] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Li
- Key Lab of Organic Optoelectronics & Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
- School of Chemical Engineering and Technology; Key Laboratory of Systems Bioengineering (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin University; Tianjin 300072 P. R. China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center of Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Xiao Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center of Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center of Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Yang Jiao
- Key Lab of Organic Optoelectronics & Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| | - Taotao Wei
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Dayong Yang
- School of Chemical Engineering and Technology; Key Laboratory of Systems Bioengineering (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin University; Tianjin 300072 P. R. China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center of Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
8
|
Highly Fluorescent Chiral N-S-Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. Angew Chem Int Ed Engl 2018; 57:2377-2382. [DOI: 10.1002/anie.201712453] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/16/2018] [Indexed: 11/07/2022]
|
9
|
Deng J, Wu S, Yao M, Gao C. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles. Sci Rep 2016; 6:31595. [PMID: 27531648 PMCID: PMC4987644 DOI: 10.1038/srep31595] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.
Collapse
Affiliation(s)
- Jun Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sai Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengyun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
Liu GF, Zhang D, Feng CL. Control of Three-Dimensional Cell Adhesion by the Chirality of Nanofibers in Hydrogels. Angew Chem Int Ed Engl 2014; 53:7789-93. [DOI: 10.1002/anie.201403249] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Indexed: 12/21/2022]
|
11
|
Liu GF, Zhang D, Feng CL. Control of Three-Dimensional Cell Adhesion by the Chirality of Nanofibers in Hydrogels. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Hu R, Zhang X, Zhao Z, Zhu G, Chen T, Fu T, Tan W. DNA Nanoflowers for Multiplexed Cellular Imaging and Traceable Targeted Drug Delivery. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400323] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Hu R, Zhang X, Zhao Z, Zhu G, Chen T, Fu T, Tan W. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew Chem Int Ed Engl 2014; 53:5821-6. [PMID: 24753303 DOI: 10.1002/anie.201400323] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Indexed: 11/05/2022]
Abstract
We present a facile approach to make aptamer-conjugated FRET (fluorescent resonance energy transfer) nanoflowers (NFs) through rolling circle replication for multiplexed cellular imaging and traceable targeted drug delivery. The NFs can exhibit multi-fluorescence emissions by a single-wavelength excitation as a result of the DNA matrix covalently incorporated with three dye molecules able to perform FRET. Compared with the conventional DNA nanostructure assembly, NF assembly is independent of template sequences, avoiding the otherwise complicated design of DNA building blocks assembled into nanostructures by base-pairing. The NFs were uniform and exhibited high fluorescence intensity and excellent photostability. Combined with the ability of traceable targeted drug delivery, these colorful DNA NFs provide a novel system for applications in multiplex fluorescent cellular imaging, effective screening of drugs, and therapeutic protocol development.
Collapse
Affiliation(s)
- Rong Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Biology, and College of Chemistry and Chemical Engineering, Collaborative Research Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082 (China)
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhao MX, Li Y, Zeng EZ, Wang CJ. The application of CdSe quantum dots with multicolor emission as fluorescent probes for cell labeling. Chem Asian J 2014; 9:1349-55. [PMID: 24616373 DOI: 10.1002/asia.201301692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/16/2022]
Abstract
Herein, highly luminescent CdSe quantum dots (QDs) with emissions from the blue to the red region of visible light were synthesized by using a simple method. The emission range of the CdSe QDs could be tuned from λ=503 to 606 nm by controlling the size of the CdSe QDs. Two amino acids, L-tryptophan (L-Trp) and L-arginine (L-Arg), were used as coating agents. The quantum yield (QY) of CdSe QDs (green color) with an optimized thickness could reach up to 52 %. The structures and compositions of QDs were examined by using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Optical properties were studied by using UV/Vis and photoluminescence (PL) spectroscopy and a comparison was made between uncoated and coated CdSe QDs. The amino acid-modified β-cyclodextrin (CD)-coated CdSe QDs presented lower cytotoxicity to cells for 48 h. Furthermore, amino acid-modified β-CD-coated green CdSe QDs in HepG2 cells were assessed by using confocal laser scanning fluorescence microscopy. The results showed that amino acid-modified β-CD-coated green CdSe QDs could enter tumor cells efficiently and indicated that biomolecule-coated QDs could be used as a potential fluorescent probe.
Collapse
Affiliation(s)
- Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng 475004 (China), Fax: (+86) 371-22864665.
| | | | | | | |
Collapse
|
15
|
Bai J, Wang T, Wang Y, Jiang X. Effects of nanoparticle surface ligands on protein adsorption and subsequent cytotoxicity. Biomater Sci 2014; 2:493-501. [DOI: 10.1039/c3bm60224a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Delgado-Pérez T, Bouchet LM, de la Guardia M, Galian RE, Pérez-Prieto J. Sensing Chiral Drugs by Using CdSe/ZnS Nanoparticles Capped withN-Acetyl-L-Cysteine Methyl Ester. Chemistry 2013; 19:11068-76. [DOI: 10.1002/chem.201300875] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/08/2013] [Indexed: 11/06/2022]
|
17
|
Bai C, Liu M. Von der Chemie zur Nanowissenschaft - mehr als nur eine Frage der Größe. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201210058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Bai C, Liu M. From Chemistry to Nanoscience: Not Just a Matter of Size. Angew Chem Int Ed Engl 2013; 52:2678-83. [DOI: 10.1002/anie.201210058] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Indexed: 11/09/2022]
|
19
|
Zhou Y, Zhu Z, Huang W, Liu W, Wu S, Liu X, Gao Y, Zhang W, Tang Z. Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption. Angew Chem Int Ed Engl 2011; 50:11456-9. [PMID: 22113805 DOI: 10.1002/anie.201103762] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Yunlong Zhou
- Laboratory of Nanomaterials, National Center for Nanoscience and Technology, Beijing, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhou Y, Zhu Z, Huang W, Liu W, Wu S, Liu X, Gao Y, Zhang W, Tang Z. Optical Coupling Between Chiral Biomolecules and Semiconductor Nanoparticles: Size-Dependent Circular Dichroism Absorption. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103762] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|