1
|
Heath SG, Gray SG, Hamzah EM, O'Connor KM, Bozonet SM, Botha AD, de Cordovez P, Magon NJ, Naughton JD, Goldsmith DLW, Schwartfeger AJ, Sunde M, Buell AK, Morris VK, Göbl C. Amyloid formation and depolymerization of tumor suppressor p16 INK4a are regulated by a thiol-dependent redox mechanism. Nat Commun 2024; 15:5535. [PMID: 38951545 PMCID: PMC11217399 DOI: 10.1038/s41467-024-49581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
The conversion of a soluble protein into polymeric amyloid structures is a process that is poorly understood. Here, we describe a fully redox-regulated amyloid system in which cysteine oxidation of the tumor suppressor protein p16INK4a leads to rapid amyloid formation. We identify a partially-structured disulfide-bonded dimeric intermediate species that subsequently assembles into fibrils. The stable amyloid structures disassemble when the disulfide bond is reduced. p16INK4a is frequently mutated in cancers and is considered highly vulnerable to single-point mutations. We find that multiple cancer-related mutations show increased amyloid formation propensity whereas mutations stabilizing the fold prevent transition into amyloid. The complex transition into amyloids and their structural stability is therefore strictly governed by redox reactions and a single regulatory disulfide bond.
Collapse
Affiliation(s)
- Sarah G Heath
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shelby G Gray
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Emilie M Hamzah
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Karina M O'Connor
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Stephanie M Bozonet
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Alex D Botha
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pierre de Cordovez
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nicholas J Magon
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Jennifer D Naughton
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Dylan L W Goldsmith
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, Sydney, Australia
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Vanessa K Morris
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Christoph Göbl
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
2
|
Pathak R, Bhangu SK, Martin GJO, Separovic F, Ashokkumar M. Ultrasound-induced protein restructuring and ordered aggregation to form amyloid crystals. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:335-352. [PMID: 35576075 PMCID: PMC9233657 DOI: 10.1007/s00249-022-01601-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022]
Abstract
Amyloid crystals, a form of ordered protein aggregates documented relatively recently, have not been studied as extensively as amyloid fibres. This study investigates the formation of amyloid crystals with low frequency ultrasound (20 kHz) using β-lactoglobulin, as a model protein for amyloid synthesis. Acoustic cavitation generates localised zones of intense shear, with extreme heat and pressure that could potentially drive the formation of amyloid structures at ambient bulk fluid temperatures (20 ± 1 °C). Thioflavin T fluorescence and electron microscopy showed that low-frequency ultrasound at 20 W/cm3 input power induced β-stacking to produce amyloid crystals in the mesoscopic size range, with a mean length of approximately 22 µm. FTIR spectroscopy indicated a shift towards increased intermolecular antiparallel β-sheet content. An increase in sonication time (0-60 min) and input power (4-24 W/cm3) increased the mean crystal length, but this increase was not linearly proportional to sonication time and input power due to the delayed onset of crystal growth. We propose that acoustic cavitation causes protein unfolding and aggregation and imparts energy to aggregates to cross the torsion barrier, to achieve their lowest energy state as amyloid crystals. The study contributes to a further understanding of protein chemistry relating to the energy landscape of folding and aggregation. Ultrasound presents opportunities for practical applications of amyloid structures, presenting a more adaptable and scalable approach for synthesis.
Collapse
Affiliation(s)
- Rachana Pathak
- School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
- The ARC Dairy Innovation Hub, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | | | - Gregory J O Martin
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
- The ARC Dairy Innovation Hub, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Frances Separovic
- School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Muthupandian Ashokkumar
- School of Chemistry, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- The ARC Dairy Innovation Hub, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
3
|
Khan MS, Althobaiti MS, Almutairi GS, Alokail MS, Altwaijry N, Alenad AM, Al-Bagmi MS, Alafaleq NO. Elucidating the binding and inhibitory potential of p-Coumaric acid against amyloid fibrillation and their cytotoxicity: Biophysical and docking analysis. Biophys Chem 2022; 291:106823. [DOI: 10.1016/j.bpc.2022.106823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022]
|
4
|
Narayan M. Revisiting the Formation of a Native Disulfide Bond: Consequences for Protein Regeneration and Beyond. Molecules 2020; 25:molecules25225337. [PMID: 33207635 PMCID: PMC7697891 DOI: 10.3390/molecules25225337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Oxidative protein folding involves the formation of disulfide bonds and the regeneration of native structure (N) from the fully reduced and unfolded protein (R). Oxidative protein folding studies have provided a wealth of information on underlying physico-chemical reactions by which disulfide-bond-containing proteins acquire their catalytically active form. Initially, we review key events underlying oxidative protein folding using bovine pancreatic ribonuclease A (RNase A), bovine pancreatic trypsin inhibitor (BPTI) and hen-egg white lysozyme (HEWL) as model disulfide bond-containing folders and discuss consequential outcomes with regard to their folding trajectories. We re-examine the findings from the same studies to underscore the importance of forming native disulfide bonds and generating a “native-like” structure early on in the oxidative folding pathway. The impact of both these features on the regeneration landscape are highlighted by comparing ideal, albeit hypothetical, regeneration scenarios with those wherein a native-like structure is formed relatively “late” in the R→N trajectory. A special case where the desired characteristics of oxidative folding trajectories can, nevertheless, stall folding is also discussed. The importance of these data from oxidative protein folding studies is projected onto outcomes, including their impact on the regeneration rate, yield, misfolding, misfolded-flux trafficking from the endoplasmic reticulum (ER) to the cytoplasm, and the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mahesh Narayan
- The Department of Chemistry and Biochemistry, The University of Texas as El Paso, El Paso, TX 79968, USA
| |
Collapse
|
5
|
Jayaram DT, Shankar BH, Ramaiah D. Effective Amyloid Defibrillation by Polyhydroxyl-Substituted Squaraine Dyes. Chem Asian J 2015; 10:2689-94. [PMID: 26289494 DOI: 10.1002/asia.201500780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Indexed: 12/14/2022]
Abstract
With an objective to develop β-amyloid destabilizing agents, we have investigated the interactions of a few water-soluble near-infrared (NIR)-absorbing squaraine dyes 1-3 with lysozyme and its amyloid aggregates through photophysical and biophysical techniques. These dyes exhibited strong interactions with lysozyme and β-amyloids in addition to serum albumins as evidenced by the absorption and emission changes. The interactions were found to be spontaneous with association constant values in the range of approximately 10(4)-10(5) m(-1), as confirmed through half-reciprocal analysis and isothermal calorimetric measurements. Uniquely, such effective interactions of the dyes have led to the complete disassembly of the β-amyloid fibrillar structures to form spherical particles approximately 350 nm in size, as confirmed through photophysical, thioflavin assay, circular dichroism (CD), atomic force microscopy (AFM), TEM, and selected-area electron diffraction (SAED) techniques. These results demonstrate that the squaraine dyes 1-3 under investigation act as effective protein-labelling and destabilizing agents of the protein amyloidogenesis.
Collapse
Affiliation(s)
- Dhanya T Jayaram
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Balaraman H Shankar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Danaboyina Ramaiah
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India. , , .,CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, Assam, India. , ,
| |
Collapse
|
6
|
Zhang J, Ogorzalek Loo RR, Loo JA. Increasing Fragmentation of Disulfide-Bonded Proteins for Top-Down Mass Spectrometry by Supercharging. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 377:546-556. [PMID: 26028988 PMCID: PMC4448141 DOI: 10.1016/j.ijms.2014.07.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The disulfide bond is an important post-translational modification to form and maintain the native structure and biological functions of proteins. Characterization of disulfide bond linkages is therefore of essential interest in the structural elucidation of proteins. Top-down mass spectrometry (MS) of disulfide-bonded proteins has been hindered by relatively low sequence coverage due to disulfide cross-linking. In this study, we employed top-down ESI-MS with Fourier-transform ion cyclotron resonance (FT-ICR) MS with electron capture dissociation (ECD) and collisionally activated dissociation (CAD) to study the fragmentation of supercharged proteins with multiple intramolecular disulfide bonds. With charge enhancement upon the addition of sulfolane to the analyte solution, improved protein fragmentation and disulfide bond cleavage efficiency was observed for proteins including bovine β-lactoglobulin, soybean trypsin inhibitor, human proinsulin, and chicken lysozyme. Both the number and relative abundances of product ions representing disulfide cleavage increase with increasing charge states for the proteins studied. Our studies suggest supercharging ESI-MS is a promising tool to aid in the top-down MS analysis of disulfide-bonded proteins, providing potentially useful information for the determination of disulfide bond linkages.
Collapse
Affiliation(s)
- Jiang Zhang
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, 90095, United States
| | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, California, 90095, United States
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California, 90095, United States
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, 90095, United States
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, California, 90095, United States
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California, 90095, United States
- Corresponding author. Tel.: +1 310 794 7023; fax: +1 310 206 4038. (J.A. Loo)
| |
Collapse
|
7
|
Neue Mitglieder der National Academy of Sciences Wolfson-Forschungspreise der Royal Society. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
New Members of the National Academy of Sciences Royal Society Wolfson Research Merit Awards. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/anie.201303907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Buell AK, Dhulesia A, White DA, Knowles TPJ, Dobson CM, Welland ME. Detailed Analysis of the Energy Barriers for Amyloid Fibril Growth. Angew Chem Int Ed Engl 2012; 51:5247-51. [DOI: 10.1002/anie.201108040] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/13/2012] [Indexed: 12/24/2022]
|
10
|
Buell AK, Dhulesia A, White DA, Knowles TPJ, Dobson CM, Welland ME. Analyse der Energiebarrieren für das Wachstum von Amyloidfibrillen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|