1
|
Ma X, Lai Y, Wang Y, Tang J, Ren T, Geng Y, Gao Y, Zhang J, Qiao B. Construction of Light‐Harvesting Systems Based on a Fluorescent Probe that Self‐Assembles in the Presence of Zn
2+. ChemistrySelect 2022. [DOI: 10.1002/slct.202204015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xinxian Ma
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Yingshan Lai
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Jiahong Tang
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Tianqi Ren
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Yutao Geng
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Yang Gao
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Jiali Zhang
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| | - Bo Qiao
- College of Chemistry and Chemical Engineering Ningxia Normal University 756000 Guyuan Ningxia Hui Autonomous Region People's Republic of China
| |
Collapse
|
2
|
Zhou X, Satyabola D, Liu H, Jiang S, Qi X, Yu L, Lin S, Liu Y, Woodbury NW, Yan H. Two-Dimensional Excitonic Networks Directed by DNA Templates as an Efficient Model Light-Harvesting and Energy Transfer System. Angew Chem Int Ed Engl 2022; 61:e202211200. [PMID: 36288100 DOI: 10.1002/anie.202211200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/07/2022]
Abstract
Photosynthetic organisms organize discrete light-harvesting complexes into large-scale networks to facilitate efficient light collection and utilization. Inspired by nature, herein, synthetic DNA templates were used to direct the formation of dye aggregates with a cyanine dye, K21, into discrete branched photonic complexes, and two-dimensional (2D) excitonic networks. The DNA templates ranged from four-arm DNA tiles, ≈10 nm in each arm, to 2D wireframe DNA origami nanostructures with different geometries and varying dimensions up to 100×100 nm. These DNA-templated dye aggregates presented strongly coupled spectral features and delocalized exciton characteristics, enabling efficient photon collection and energy transfer. Compared to the discrete branched photonic systems templated on individual DNA tiles, the interconnected excitonic networks showed approximately a 2-fold increase in energy transfer efficiency. This bottom-up assembly strategy paves the way to create 2D excitonic systems with complex geometries and engineered energy pathways.
Collapse
Affiliation(s)
- Xu Zhou
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Deeksha Satyabola
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Liu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Xiaodong Qi
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Lu Yu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Su Lin
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Yan Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Center for Single Molecule Biophysics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Neal W Woodbury
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.,School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
3
|
Ma X, Wang Y, Lai Y, Ren T, Tang J, Gao Y, Geng Y, Zhang J, Yue J. Assembly of Artificial Light‐Harvesting Systems Based on Supramolecular Self‐Assembly Metallogels. ChemistrySelect 2022. [DOI: 10.1002/slct.202202402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinxian Ma
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Yingshan Lai
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Tianqi Ren
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Jiahong Tang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Yang Gao
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Yutao Geng
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Jiali Zhang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| | - Jinlong Yue
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan 756000 Ningxia Hui Autonomous Region People's Republic of China
| |
Collapse
|
4
|
Nakamura M, Yoshioka H, Takada T. Conformational Switching of Pyrenes Associated on Hairpin Loop Region by DNA B‐Z Transition. ChemistrySelect 2022. [DOI: 10.1002/slct.202200696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mitsunobu Nakamura
- Department of Applied Chemistry University of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Hibiki Yoshioka
- Department of Applied Chemistry University of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Tadao Takada
- Department of Applied Chemistry University of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| |
Collapse
|
5
|
Jevric J, Langenegger SM, Häner R. Light-Harvesting Supramolecular Polymers: Energy Transfer to Various Polyaromatic Acceptors. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jovana Jevric
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
6
|
Nakamura M, Takada T, Yamana K. Controlling Pyrene Association in DNA Duplexes by B‐ to Z‐DNA Transitions. Chembiochem 2019; 20:2949-2954. [DOI: 10.1002/cbic.201900350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Mitsunobu Nakamura
- Department of Applied ChemistryUniversity of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Tadao Takada
- Department of Applied ChemistryUniversity of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Kazushige Yamana
- Department of Applied ChemistryUniversity of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| |
Collapse
|
7
|
Kownacki M, Langenegger SM, Liu SX, Häner R. Integrating DNA Photonic Wires into Light-Harvesting Supramolecular Polymers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mariusz Kownacki
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
8
|
Kownacki M, Langenegger SM, Liu SX, Häner R. Integrating DNA Photonic Wires into Light-Harvesting Supramolecular Polymers. Angew Chem Int Ed Engl 2018; 58:751-755. [DOI: 10.1002/anie.201809914] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Mariusz Kownacki
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Shi-Xia Liu
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
9
|
Guo S, Song Y, He Y, Hu XY, Wang L. Highly Efficient Artificial Light-Harvesting Systems Constructed in Aqueous Solution Based on Supramolecular Self-Assembly. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800175] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shuwen Guo
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yongshang Song
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Yuling He
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation of Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Xiao-Yu Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 China
- School of Petrochemical Engineering; Changzhou University; Changzhou 213164 China
| |
Collapse
|
10
|
Guo S, Song Y, He Y, Hu XY, Wang L. Highly Efficient Artificial Light-Harvesting Systems Constructed in Aqueous Solution Based on Supramolecular Self-Assembly. Angew Chem Int Ed Engl 2018; 57:3163-3167. [PMID: 29383817 DOI: 10.1002/anie.201800175] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 12/29/2022]
Abstract
Highly efficient light-harvesting systems were successfully fabricated in aqueous solution based on the supramolecular self-assembly of a water-soluble pillar[6]arene (WP6), a salicylaldehyde azine derivative (G), and two different fluorescence dyes, Nile Red (NiR) or Eosin Y (ESY). The WP6-G supramolecular assembly exhibits remarkably improved aggregation-induced emission enhancement and acts as a donor for the artificial light-harvesting system, and NiR or ESY, which are loaded within the WP6-G assembly, act as acceptors. An efficient energy-transfer process takes place from the WP6-G assembly not only to NiR but also to ESY for these two different systems. Furthermore, both of the WP6-G-NiR and WP6-G-ESY systems show an ultrahigh antenna effect at a high donor/acceptor ratio.
Collapse
Affiliation(s)
- Shuwen Guo
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yongshang Song
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuling He
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiao-Yu Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
11
|
Shi Y, Cao X, Hu D, Gao H. Highly Branched Polymers with Layered Structures that Mimic Light‐Harvesting Processes. Angew Chem Int Ed Engl 2017; 57:516-520. [DOI: 10.1002/anie.201709492] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/17/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Yi Shi
- Department of Chemistry and Biochemistry University of Notre Dame 305C McCourtney Hall Notre Dame IN 46556 USA
| | - Xiaosong Cao
- Department of Chemistry and Biochemistry University of Notre Dame 305C McCourtney Hall Notre Dame IN 46556 USA
| | - Daqiao Hu
- Department of Chemistry and Biochemistry University of Notre Dame 305C McCourtney Hall Notre Dame IN 46556 USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry University of Notre Dame 305C McCourtney Hall Notre Dame IN 46556 USA
| |
Collapse
|
12
|
Shi Y, Cao X, Hu D, Gao H. Highly Branched Polymers with Layered Structures that Mimic Light‐Harvesting Processes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709492] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yi Shi
- Department of Chemistry and Biochemistry University of Notre Dame 305C McCourtney Hall Notre Dame IN 46556 USA
| | - Xiaosong Cao
- Department of Chemistry and Biochemistry University of Notre Dame 305C McCourtney Hall Notre Dame IN 46556 USA
| | - Daqiao Hu
- Department of Chemistry and Biochemistry University of Notre Dame 305C McCourtney Hall Notre Dame IN 46556 USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry University of Notre Dame 305C McCourtney Hall Notre Dame IN 46556 USA
| |
Collapse
|
13
|
Kim KT, Choi TS, Kim KY, Kim HI, Kim BH. Disassembly of Chromophore-Guided DNA Duplexes through Site-Selective Binding of Coralyne to Pyrene-Modified Adenine Bases. Chempluschem 2016; 81:590-593. [DOI: 10.1002/cplu.201600230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ki Tae Kim
- Department of Chemistry; Division of Advanced Materials Science; Pohang University of Science and Technology; Pohang 37673 Republic of Korea
| | - Tae Su Choi
- Department of Chemistry; Division of Advanced Materials Science; Pohang University of Science and Technology; Pohang 37673 Republic of Korea
- Department of Chemistry; Korea University; Seoul 02841 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry; Division of Advanced Materials Science; Pohang University of Science and Technology; Pohang 37673 Republic of Korea
| | - Hugh I. Kim
- Department of Chemistry; Division of Advanced Materials Science; Pohang University of Science and Technology; Pohang 37673 Republic of Korea
- Department of Chemistry; Korea University; Seoul 02841 Republic of Korea
| | - Byeang Hyean Kim
- Department of Chemistry; Division of Advanced Materials Science; Pohang University of Science and Technology; Pohang 37673 Republic of Korea
| |
Collapse
|
14
|
Liu Y, Jin J, Deng H, Li K, Zheng Y, Yu C, Zhou Y. Protein-Framed Multi-Porphyrin Micelles for a Hybrid Natural-Artificial Light-Harvesting Nanosystem. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yannan Liu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Jiyang Jin
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Hongping Deng
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Ke Li
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Yongli Zheng
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
15
|
Liu Y, Jin J, Deng H, Li K, Zheng Y, Yu C, Zhou Y. Protein-Framed Multi-Porphyrin Micelles for a Hybrid Natural-Artificial Light-Harvesting Nanosystem. Angew Chem Int Ed Engl 2016; 55:7952-7. [PMID: 27187799 DOI: 10.1002/anie.201601516] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Indexed: 01/02/2023]
Abstract
A micelle-like hybrid natural-artificial light-harvesting nanosystem was prepared through protein-framed electrostatic self-assembly of phycocyanin and a four-armed porphyrin star polymer. The nanosystem has a special structure of pomegranate-like unimolecular micelle aggregate with one phycocyanin acceptor in the center and multiple porphyrin donors in the shell. It can inhibit donor self-quenching effectively and display efficient transfer of excitation energy (about 80.1 %) in water. Furthermore, the number of donors contributing to a single acceptor could reach as high as about 179 in this nanosystem.
Collapse
Affiliation(s)
- Yannan Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiyang Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hongping Deng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ke Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yongli Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
16
|
Chen PZ, Weng YX, Niu LY, Chen YZ, Wu LZ, Tung CH, Yang QZ. Light-Harvesting Systems Based on Organic Nanocrystals To Mimic Chlorosomes. Angew Chem Int Ed Engl 2016; 55:2759-63. [DOI: 10.1002/anie.201510503] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Peng-Zhong Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yu-Xiang Weng
- Key Laboratory of Soft Matter physics; Institute of Physics; Chinese Academy of Sciences; Beijing 100190 China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yu-Zhe Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
17
|
Chen PZ, Weng YX, Niu LY, Chen YZ, Wu LZ, Tung CH, Yang QZ. Light-Harvesting Systems Based on Organic Nanocrystals To Mimic Chlorosomes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510503] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng-Zhong Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yu-Xiang Weng
- Key Laboratory of Soft Matter physics; Institute of Physics; Chinese Academy of Sciences; Beijing 100190 China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Yu-Zhe Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
18
|
Ensslen P, Brandl F, Sezi S, Varghese R, Kutta RJ, Dick B, Wagenknecht HA. DNA-Based Oligochromophores as Light-Harvesting Systems. Chemistry 2015; 21:9349-54. [PMID: 26069203 DOI: 10.1002/chem.201501213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 12/20/2022]
Abstract
The chromophores ethynyl pyrene as blue, ethynyl perylene as green and ethynyl Nile red as red emitter were conjugated to the 5-position of 2'-deoxyuridine via an acetylene bridge. Using phosphoramidite chemistry on solid phase labelled DNA duplexes were prepared that bear single chromophore modifications, and binary and ternary combinations of these chromophore modifications. The steady-state and time-resolved fluorescence spectra of all three chromophores were studied in these modified DNA duplexes. An energy-transfer cascade occurs from ethynyl pyrene over ethynyl perylene to ethynyl Nile red and subsequently an electron-transfer cascade in the opposite direction (from ethynyl Nile red to ethynyl perylene or ethynyl pyrene, but not from ethynyl perylene to ethynyl pyrene). The electron-transfer processes finally provide charge separation. The efficiencies by these energy and electron-transfer processes can be tuned by the distances between the chromophores and the sequences. Most importantly, excitation at any wavelength between 350 and 700 nm finally leads to charge separated states which make these DNA samples promising candidates for light-harvesting systems.
Collapse
Affiliation(s)
- Philipp Ensslen
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany)
| | - Fabian Brandl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg (Germany)
| | - Sabrina Sezi
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany)
| | - Reji Varghese
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany)
| | - Roger-Jan Kutta
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg (Germany)
| | - Bernhard Dick
- Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg (Germany)
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany).
| |
Collapse
|
19
|
Pu F, Wu L, Ran X, Ren J, Qu X. G-Quartet-Based Nanostructure for Mimicking Light-Harvesting Antenna. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Pu F, Wu L, Ran X, Ren J, Qu X. G-quartet-based nanostructure for mimicking light-harvesting antenna. Angew Chem Int Ed Engl 2014; 54:892-6. [PMID: 25423890 DOI: 10.1002/anie.201409832] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Indexed: 12/13/2022]
Abstract
Artificial light-harvesting systems have received great attention for use in photosynthetic and optoelectronic devices. Herein, a system involving G-quartet-based hierarchical nanofibers generated from the self-assembly of guanosine 5'-monophosphate (GMP) and a two-step Förster resonance energy transfer (FRET) is presented that mimics natural light-harvesting antenna. This solid-state property offers advantages for future device fabrication. The generation of photocurrent under visible light shows it has potential for use as a nanoscale photoelectric device. The work will be beneficial for the development of light-harvesting systems by the self-assembly of supramolecular nanostructures.
Collapse
Affiliation(s)
- Fang Pu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (P.R. China)
| | | | | | | | | |
Collapse
|
21
|
Winiger CB, Li S, Kumar GR, Langenegger SM, Häner R. Elektronischer Energietransfer über lange Distanzen in lichtsammelnden supramolekularen Polymeren. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407968] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Winiger CB, Li S, Kumar GR, Langenegger SM, Häner R. Long-Distance Electronic Energy Transfer in Light-Harvesting Supramolecular Polymers. Angew Chem Int Ed Engl 2014; 53:13609-13. [DOI: 10.1002/anie.201407968] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/24/2014] [Indexed: 11/08/2022]
|
23
|
Pathigoolla A, Sureshan KM. Synthesis of Triazole-linked Homonucleoside Polymers through Topochemical Azide-Alkyne Cycloaddition. Angew Chem Int Ed Engl 2014; 53:9522-5. [DOI: 10.1002/anie.201404797] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 12/24/2022]
|
24
|
Pathigoolla A, Sureshan KM. Synthesis of Triazole-linked Homonucleoside Polymers through Topochemical Azide-Alkyne Cycloaddition. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404797] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Albert SK, Thelu HVP, Golla M, Krishnan N, Chaudhary S, Varghese R. Self-assembly of DNA-oligo(p-phenylene-ethynylene) hybrid amphiphiles into surface-engineered vesicles with enhanced emission. Angew Chem Int Ed Engl 2014; 53:8352-7. [PMID: 24962762 DOI: 10.1002/anie.201403455] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/19/2014] [Indexed: 11/09/2022]
Abstract
Surface-addressable nanostructures of linearly π-conjugated molecules play a crucial role in the emerging field of nanoelectronics. Herein, by using DNA as the hydrophilic segment, we demonstrate a solid-phase "click" chemistry approach for the synthesis of a series of DNA-chromophore hybrid amphiphiles and report their reversible self-assembly into surface-engineered vesicles with enhanced emission. DNA-directed surface addressability of the vesicles was demonstrated through the integration of gold nanoparticles onto the surface of the vesicles by sequence-specific DNA hybridization. This system could be converted to a supramolecular light-harvesting antenna by integrating suitable FRET acceptors onto the surface of the nanostructures. The general nature of the synthesis, surface addressability, and biocompatibility of the resulting nanostructures offer great promises for nanoelectronics, energy, and biomedical applications.
Collapse
Affiliation(s)
- Shine K Albert
- School of Chemistry, Indian Institute of Science Education and Research-Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-695016 (India)
| | | | | | | | | | | |
Collapse
|
26
|
Albert SK, Thelu HVP, Golla M, Krishnan N, Chaudhary S, Varghese R. Self-Assembly of DNA-Oligo(p-phenylene-ethynylene) Hybrid Amphiphiles into Surface-Engineered Vesicles with Enhanced Emission. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403455] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Tsuto K, Nakamura M, Takada T, Yamana K. Diketopyrrolopyrrole J-Aggregates Formed by Self-Organization with DNA. Chem Asian J 2014; 9:1618-22. [DOI: 10.1002/asia.201402063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Indexed: 01/08/2023]
|
28
|
Vaz MGF, Cassaro RAA, Akpinar H, Schlueter JA, Lahti PM, Novak MA. A Cobalt Pyrenylnitronylnitroxide Single-Chain Magnet with High Coercivity and Record Blocking Temperature. Chemistry 2014; 20:5460-7. [DOI: 10.1002/chem.201304852] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Indexed: 11/05/2022]
|
29
|
Avestro AJ, Gardner DM, Vermeulen NA, Wilson EA, Schneebeli ST, Whalley AC, Belowich ME, Carmieli R, Wasielewski MR, Stoddart JF. Gated electron sharing within dynamic naphthalene diimide-based oligorotaxanes. Angew Chem Int Ed Engl 2014; 53:4442-9. [PMID: 24623608 DOI: 10.1002/anie.201309680] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Indexed: 12/12/2022]
Abstract
The controlled self-assembly of well-defined and spatially ordered π-systems has attracted considerable interest because of their potential applications in organic electronics. An important contemporary pursuit relates to the investigation of charge transport across noncovalently coupled components in a stepwise fashion. Dynamic oligorotaxanes, prepared by template-directed methods, provide a scaffold for directing the construction of monodisperse one-dimensional assemblies in which the functional units communicate electronically through-space by way of π-orbital interactions. Reported herein is a series of oligorotaxanes containing one, two, three and four naphthalene diimide (NDI) redox-active units, which have been shown by cyclic voltammetry, and by EPR and ENDOR spectroscopies, to share electrons across the NDI stacks. Thermally driven motions between the neighboring NDI units in the oligorotaxanes influence the passage of electrons through the NDI stacks in a manner reminiscent of the conformationally gated charge transfer observed in DNA.
Collapse
Affiliation(s)
- Alyssa-Jennifer Avestro
- Center for the Chemistry of Integrated Systems (CCIS) and Argonne-Northwestern Solar Energy Research (ANSER) Center, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA) http://chemgroups.northwestern.edu/wasielewski http://stoddart.northwestern.edu
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Avestro AJ, Gardner DM, Vermeulen NA, Wilson EA, Schneebeli ST, Whalley AC, Belowich ME, Carmieli R, Wasielewski MR, Stoddart JF. Gated Electron Sharing Within Dynamic Naphthalene Diimide-Based Oligorotaxanes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309680] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Vybornyi M, Rudnev AV, Langenegger SM, Wandlowski T, Calzaferri G, Häner R. Formation of Two-Dimensional Supramolecular Polymers by Amphiphilic Pyrene Oligomers. Angew Chem Int Ed Engl 2013; 52:11488-93. [DOI: 10.1002/anie.201307029] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Indexed: 01/25/2023]
|
32
|
Vybornyi M, Rudnev AV, Langenegger SM, Wandlowski T, Calzaferri G, Häner R. Formation of Two-Dimensional Supramolecular Polymers by Amphiphilic Pyrene Oligomers. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Wang S, Guo J, Ono T, Kool ET. DNA polyfluorophores for real-time multicolor tracking of dynamic biological systems. Angew Chem Int Ed Engl 2012; 51:7176-80. [PMID: 22684777 DOI: 10.1002/anie.201201928] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 04/16/2012] [Indexed: 11/07/2022]
Abstract
Dye-ing to live: Spectral limitations of common organic dyes make it difficult or impossible to visualize and follow multiple biological components in rapidly moving systems. The development of a multispectral set of improved DNA-scaffolded fluorophores is described. Their use in multicolor cellular imaging (see scheme) and in tracking of biological motions on the subsecond timescale is demonstrated.
Collapse
Affiliation(s)
- Shenliang Wang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
34
|
Wang S, Guo J, Ono T, Kool ET. DNA Polyfluorophores for Real-Time Multicolor Tracking of Dynamic Biological Systems. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|