1
|
Main KHS, Provan JI, Haynes PJ, Wells G, Hartley JA, Pyne ALB. Atomic force microscopy-A tool for structural and translational DNA research. APL Bioeng 2021; 5:031504. [PMID: 34286171 PMCID: PMC8272649 DOI: 10.1063/5.0054294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) is a powerful imaging technique that allows for structural characterization of single biomolecules with nanoscale resolution. AFM has a unique capability to image biological molecules in their native states under physiological conditions without the need for labeling or averaging. DNA has been extensively imaged with AFM from early single-molecule studies of conformational diversity in plasmids, to recent examinations of intramolecular variation between groove depths within an individual DNA molecule. The ability to image dynamic biological interactions in situ has also allowed for the interaction of various proteins and therapeutic ligands with DNA to be evaluated-providing insights into structural assembly, flexibility, and movement. This review provides an overview of how innovation and optimization in AFM imaging have advanced our understanding of DNA structure, mechanics, and interactions. These include studies of the secondary and tertiary structure of DNA, including how these are affected by its interactions with proteins. The broader role of AFM as a tool in translational cancer research is also explored through its use in imaging DNA with key chemotherapeutic ligands, including those currently employed in clinical practice.
Collapse
Affiliation(s)
| | - James I. Provan
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - John A. Hartley
- UCL Cancer Institute, University College London, London WC1E 6DD, United Kingdom
| | | |
Collapse
|
2
|
Hong F, Zhang F, Liu Y, Yan H. DNA Origami: Scaffolds for Creating Higher Order Structures. Chem Rev 2017; 117:12584-12640. [DOI: 10.1021/acs.chemrev.6b00825] [Citation(s) in RCA: 645] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fan Hong
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Fei Zhang
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yan Liu
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
Marchetti M, Malinowska A, Heller I, Wuite GJL. How to switch the motor on: RNA polymerase initiation steps at the single-molecule level. Protein Sci 2017; 26:1303-1313. [PMID: 28470684 DOI: 10.1002/pro.3183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 11/06/2022]
Abstract
RNA polymerase (RNAP) is the central motor of gene expression since it governs the process of transcription. In prokaryotes, this holoenzyme is formed by the RNAP core and a sigma factor. After approaching and binding the specific promoter site on the DNA, the holoenzyme-promoter complex undergoes several conformational transitions that allow unwinding and opening of the DNA duplex. Once the first DNA basepairs (∼10 bp) are transcribed in an initial transcription process, the enzyme unbinds from the promoter and proceeds downstream along the DNA while continuously opening the helix and polymerizing the ribonucleotides in correspondence with the template DNA sequence. When the gene is transcribed into RNA, the process generally is terminated and RNAP unbinds from the DNA. The first step of transcription-initiation, is considered the rate-limiting step of the entire process. This review focuses on the single-molecule studies that try to reveal the key steps in the initiation phase of bacterial transcription. Such single-molecule studies have, for example, allowed real-time observations of the RNAP target search mechanism, a mechanism still under debate. Moreover, single-molecule studies using Förster Resonance Energy Transfer (FRET) revealed the conformational changes that the enzyme undergoes during initiation. Force-based techniques such as scanning force microscopy and magnetic tweezers allowed quantification of the energy that drives the RNAP translocation along DNA and its dynamics. In addition to these in vitro experiments, single particle tracking in vivo has provided a direct quantification of the relative populations in each phase of transcription and their locations within the cell.
Collapse
Affiliation(s)
- M Marchetti
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - I Heller
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G J L Wuite
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Effect of heparin and heparan sulphate on open promoter complex formation for a simple tandem gene model using ex situ atomic force microscopy. Methods 2017; 120:91-102. [DOI: 10.1016/j.ymeth.2017.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 11/23/2022] Open
|
5
|
Chandrasekaran AR, Anderson N, Kizer M, Halvorsen K, Wang X. Beyond the Fold: Emerging Biological Applications of DNA Origami. Chembiochem 2016; 17:1081-9. [PMID: 26928725 DOI: 10.1002/cbic.201600038] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 01/22/2023]
Abstract
The use of DNA as a material for nanoscale construction has blossomed in the past decade. This is largely attributable to the DNA origami technique, which has enabled construction of nanostructures ranging from simple two-dimensional sheets to complex three-dimensional objects with defined curves and edges. These structures are amenable to site-specific functionalization with nanometer precision, and have been shown to exhibit cellular biocompatibility and permeability. The DNA origami technique has already found widespread use in a variety of emerging biological applications such as biosensing, enzyme cascades, biomolecular analysis, biomimetics, and drug delivery. We highlight a few of these applications and comments on the prospects for this rapidly expanding field of research.
Collapse
Affiliation(s)
| | - Nate Anderson
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Megan Kizer
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Xing Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. , .,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. ,
| |
Collapse
|
6
|
Dannenberg F, Dunn KE, Bath J, Kwiatkowska M, Turberfield AJ, Ouldridge TE. Modelling DNA origami self-assembly at the domain level. J Chem Phys 2015; 143:165102. [DOI: 10.1063/1.4933426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Frits Dannenberg
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Katherine E. Dunn
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
- Department of Electronics, University of York, York YO10 5DD, United Kingdom
| | - Jonathan Bath
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Marta Kwiatkowska
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
| | - Andrew J. Turberfield
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Thomas E. Ouldridge
- Department of Physics, University of Oxford, Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
- Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
| |
Collapse
|
7
|
|
8
|
Endo M, Yang Y, Suzuki Y, Hidaka K, Sugiyama H. Single-Molecule Visualization of the Hybridization and Dissociation of Photoresponsive Oligonucleotides and Their Reversible Switching Behavior in a DNA Nanostructure. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Endo M, Yang Y, Suzuki Y, Hidaka K, Sugiyama H. Single-molecule visualization of the hybridization and dissociation of photoresponsive oligonucleotides and their reversible switching behavior in a DNA nanostructure. Angew Chem Int Ed Engl 2012; 51:10518-22. [PMID: 22965475 DOI: 10.1002/anie.201205247] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Indexed: 12/20/2022]
Abstract
A framed photo of DNA: A pair of photoresponsive oligonucleotides containing azobenzene moieties was introduced into double-stranded DNA within the cavity of a DNA nanostructure (see scheme). The two dsDNAs, in contact at the center, were dissociated using UV irradiation and hybridized with visible light; this was directly observed using high-speed atomic force microscopy.
Collapse
Affiliation(s)
- Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|