1
|
Liu Z, Yan F. Switchable Adhesion: On-Demand Bonding and Debonding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200264. [PMID: 35233988 PMCID: PMC9036041 DOI: 10.1002/advs.202200264] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Indexed: 05/14/2023]
Abstract
Adhesives have a long and illustrious history throughout human history. The development of synthetic polymers has highly improved adhesions in terms of their strength and environmental tolerance. As soft robotics, flexible electronics, and intelligent gadgets become more prevalent, adhesives with changeable adhesion capabilities will become more necessary. These adhesives should be programmable and switchable, with the ability to respond to light, electromagnetic fields, thermal, and other stimuli. These requirements necessitate novel concepts in adhesion engineering and material science. Considerable studies have been carried out to develop a wide range of adhesives. This review focuses on stimuli-responsive material-based adhesives, outlining current research on switchable and controlled adhesives, including design and manufacturing techniques. Finally, the potential for smart adhesives in applications, and the development of future adhesive forms are critically suggested.
Collapse
Affiliation(s)
- Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| |
Collapse
|
2
|
Xu D, Ricken J, Wegner SV. Turning Cell Adhesions ON or OFF with High Spatiotemporal Precision Using the Green Light Responsive Protein CarH. Chemistry 2020; 26:9859-9863. [PMID: 32270892 PMCID: PMC7496717 DOI: 10.1002/chem.202001238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/31/2020] [Indexed: 01/09/2023]
Abstract
Spatiotemporal control of integrin-mediated cell adhesions to extracellular matrix regulates cell behavior with has numerous implications for biotechnological applications. In this work, two approaches for regulating cell adhesions in space and time with high precision are reported, both of which utilize green light. In the first design, CarH, which is a tetramer in the dark, is used to mask cRGD adhesion-peptides on a surface. Upon green light illumination, the CarH tetramer dissociates into its monomers, revealing the adhesion peptide so that cells can adhere. In the second design, the RGD motif is incorporated into the CarH protein tetramer such that cells can adhere to surfaces functionalized with this protein. The cell adhesions can be disrupted with green light, due to the disassembly of the CarH-RGD protein. Both designs allow for photoregulation with noninvasive visible light and open new possibilities to investigate the dynamical regulation of cell adhesions in cell biology.
Collapse
Affiliation(s)
- Dongdong Xu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Julia Ricken
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Max Planck Institute for Medical ResearchJahnstraße 2969120HeidelbergGermany
| | - Seraphine V. Wegner
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterWaldeyerstraße 1548149MünsterGermany
| |
Collapse
|
3
|
Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020; 120:3852-3889. [DOI: 10.1021/acs.chemrev.9b00739] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Robert Hein
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
4
|
Ma Y, Tian X, Liu L, Pan J, Pan G. Dynamic Synthetic Biointerfaces: From Reversible Chemical Interactions to Tunable Biological Effects. Acc Chem Res 2019; 52:1611-1622. [PMID: 30793586 DOI: 10.1021/acs.accounts.8b00604] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dynamic synthetic biointerface is a new concept of biomaterials with smart surface properties capable of controlled display of bioactive ligands, dynamic modulation of cell-biomaterial interactions, and subsequently clever manipulation of fundamental cell behaviors like adhesion, migration, proliferation, differentiation, apoptosis, and so on. As mimics of the extracellular matrix (ECM), such molecularly dynamic biointerfaces have attracted increasing attention because of their tunable biological effects with great significance in in situ cell biology, tissue engineering, drug targeting, and cell isolation for cancer theranostics. Approaches to control bioligand presentation on materials mainly rely on surface functionalization with dynamic or reversible chemical linkers to which the ligands are tethered. Photoelectric-transformable or photocleavable chemistry, host-guest supramolecular chemistry, and multiple noncovalent interactions were initially employed for fabrication of dynamic synthetic biointerfaces. However, the external stimuli required in these systems, including electrochemical potential, electrochemical reaction, and near-infrared or UV light, are mostly invasive to living cells; and few of them are able to respond to the stimuli occurring in natural biological processes. In addition, most of current systems focused only on the control of cell adhesion, other cell behaviors like migration, differentiation and apoptosis have rarely been explored. Therefore, the development of novel synthetic biointerfaces that permit access to noninvasive control of diverse cell behaviors still represents a key challenge in biomaterials science. Our group pioneers the use of reversible covalent bonds, metal coordinative interactions, and the molecular affinity of molecularly imprinted synthetic receptors as the dynamic driving forces for the fabrication of smart biointerfaces. Several typical biological stimuli, such as glycemic volatility, body temperature fluctuations, regional disparity of pH values, and specific biomolecules, were tactfully involved in our systems. In this Account, we highlight the strategies we have used on the exploitation of dynamic synthetic biointerfaces based on the above three types of reversible chemical interactions. While our attention has been focused on biologically stimuli-responsive or other noninvasive ligand presentation, the versatility of dynamic synthetic biointerfaces in control of cell adhesion, directing cell differentiation, and targeting cell apoptosis has also been successfully demonstrated. In addition, a paradigm shift of dynamic synthetic biointerfaces from macroscopic to microscopic scale (e.g., nanobiointerfaces) was conceptually demonstrated in our research. The potential applications of these developed dynamic systems, including fundamental cell biology, surface engineering of biomaterials, scaffold-free tissue engineering, cell-based cancer diagnosis, and drug targeting cancer therapy, were also introduced, respectively. Although the development of dynamic synthetic biointerfaces is still in its infancy, we strongly believe that further efforts in this field will play a continuously and increasingly significant role in bridging the gap between chemistry and biology.
Collapse
|
5
|
Koçer G, Jonkheijm P. About Chemical Strategies to Fabricate Cell-Instructive Biointerfaces with Static and Dynamic Complexity. Adv Healthc Mater 2018; 7:e1701192. [PMID: 29717821 DOI: 10.1002/adhm.201701192] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/12/2018] [Indexed: 12/21/2022]
Abstract
Properly functioning cell-instructive biointerfaces are critical for healthy integration of biomedical devices in the body and serve as decisive tools for the advancement of our understanding of fundamental cell biological phenomena. Studies are reviewed that use covalent chemistries to fabricate cell-instructive biointerfaces. These types of biointerfaces typically result in a static presentation of predefined cell-instructive cues. Chemically defined, but dynamic cell-instructive biointerfaces introduce spatiotemporal control over cell-instructive cues and present another type of biointerface, which promises a more biomimetic way to guide cell behavior. Therefore, strategies that offer control over the lateral sorting of ligands, the availability and molecular structure of bioactive ligands, and strategies that offer the ability to induce physical, chemical and mechanical changes in situ are reviewed. Specific attention is paid to state-of-the-art studies on dynamic, cell-instructive 3D materials. Future work is expected to further deepen our understanding of molecular and cellular biological processes investigating cell-type specific responses and the translational steps toward targeted in vivo applications.
Collapse
Affiliation(s)
- Gülistan Koçer
- TechMed Centre and MESA Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Pascal Jonkheijm
- TechMed Centre and MESA Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
6
|
Liu L, Tian X, Ma Y, Duan Y, Zhao X, Pan G. A Versatile Dynamic Mussel-Inspired Biointerface: From Specific Cell Behavior Modulation to Selective Cell Isolation. Angew Chem Int Ed Engl 2018; 57:7878-7882. [DOI: 10.1002/anie.201804802] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Lei Liu
- Institute for Advanced Materials; School of Materials Science and Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| | - Xiaohua Tian
- Institute for Advanced Materials; School of Materials Science and Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| | - Yue Ma
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| | - Yuqing Duan
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang China
| | - Xin Zhao
- Department of Biomedical Engineering; The Hong Kong Polytechnic University; Hung Hom Hong Kong China
| | - Guoqing Pan
- Institute for Advanced Materials; School of Materials Science and Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| |
Collapse
|
7
|
Liu L, Tian X, Ma Y, Duan Y, Zhao X, Pan G. A Versatile Dynamic Mussel-Inspired Biointerface: From Specific Cell Behavior Modulation to Selective Cell Isolation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lei Liu
- Institute for Advanced Materials; School of Materials Science and Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| | - Xiaohua Tian
- Institute for Advanced Materials; School of Materials Science and Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| | - Yue Ma
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| | - Yuqing Duan
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang China
| | - Xin Zhao
- Department of Biomedical Engineering; The Hong Kong Polytechnic University; Hung Hom Hong Kong China
| | - Guoqing Pan
- Institute for Advanced Materials; School of Materials Science and Engineering; Jiangsu University; Zhenjiang Jiangsu 212013 China
| |
Collapse
|
8
|
Burrows-Medaille: S. Brooker / Breyer-Medaille: P. N. Bartlett / R.-H.-Stokes-Medaille: H. Zhao / A.-M.-Bond-Medaille: S. Ciampi. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Burrows Medal: S. Brooker / Breyer Medal: P. N. Bartlett / R. H. Stokes Medal: H. Zhao / A. M. Bond Medal: S. Ciampi. Angew Chem Int Ed Engl 2017; 56:13181. [DOI: 10.1002/anie.201709209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Bian Q, Wang W, Han G, Chen Y, Wang S, Wang G. Photoswitched Cell Adhesion on Azobenzene-Containing Self-Assembled Films. Chemphyschem 2016; 17:2503-8. [PMID: 27146320 DOI: 10.1002/cphc.201600362] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 11/09/2022]
Abstract
Stimuli-responsive surfaces that can regulate and control cell adhesion have attracted much attention for their great potential in diverse biomedical applications. Unlike for pH- and temperature-responsive surfaces, the process of photoswitching requires no additional input of chemicals or thermal energy. In this work, two different photoresponsive azobenzene films are synthesized by chemisorption and electrostatic layer-by-layer (LbL) assembly techniques. The LbL film exhibits a relatively loose packing of azobenzene chromophores compared with the chemisorbed film. The changes in trans/cis isomer ratio of the azobenzene moiety and the corresponding wettability of the LbL films are larger than those of the chemisorbed films under UV light irradiation. The tendency for cell adhesion on the LbL films decreases markedly after UV light irradiation, whereas adhesion on the chemisorbed films decreases only slightly, because the azobenzene chromophores stay densely packed. Interestingly, the tendency for cell adhesion can be considerably increased on rough substrates, the roughness being introduced by use of photolithography and inductively coupled plasma deep etching techniques. For the chemisorbed films on rough substrates, the amount of cells that adhere also changes slightly after UV light irradiation, whereas, the amount of cells that adhere to LbL films on rough substrates decreases significantly.
Collapse
Affiliation(s)
- Qing Bian
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenshuo Wang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoxiang Han
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yupeng Chen
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shutao Wang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
11
|
Li S, Gaddes ER, Chen N, Wang Y. Molecular Encryption and Reconfiguration for Remodeling of Dynamic Hydrogels. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Li S, Gaddes ER, Chen N, Wang Y. Molecular Encryption and Reconfiguration for Remodeling of Dynamic Hydrogels. Angew Chem Int Ed Engl 2015; 54:5957-61. [DOI: 10.1002/anie.201500397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/26/2015] [Indexed: 11/09/2022]
|
13
|
|
14
|
Krabbenborg SO, Huskens J. Electrochemically Generated Gradients. Angew Chem Int Ed Engl 2014; 53:9152-67. [DOI: 10.1002/anie.201310349] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Indexed: 01/06/2023]
|
15
|
Pujari SP, Scheres L, Marcelis ATM, Zuilhof H. Covalent Surface Modification of Oxide Surfaces. Angew Chem Int Ed Engl 2014; 53:6322-56. [DOI: 10.1002/anie.201306709] [Citation(s) in RCA: 583] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Sidharam P. Pujari
- Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (The Netherlands)
| | - Luc Scheres
- Surfix B.V. Dreijenplein 8, 6703 HB Wageningen (The Netherlands)
| | - Antonius T. M. Marcelis
- Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (The Netherlands)
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (The Netherlands)
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah (Saudi Arabia)
| |
Collapse
|
16
|
Pujari SP, Scheres L, Marcelis ATM, Zuilhof H. Kovalente Oberflächenmodifikationen von Oxiden. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201306709] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sidharam P. Pujari
- Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (Niederlande)
| | | | - Antonius T. M. Marcelis
- Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (Niederlande)
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, P.O. Box 26, 6703 HB Wageningen (Niederlande)
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah (Saudi‐Arabien)
| |
Collapse
|
17
|
Tabarin T, Pageon SV, Bach CTT, Lu Y, O'Neill GM, Gooding JJ, Gaus K. Insights into Adhesion Biology Using Single-Molecule Localization Microscopy. Chemphyschem 2014; 15:606-18. [DOI: 10.1002/cphc.201301041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Indexed: 01/07/2023]
|
18
|
Li W, Wang J, Ren J, Qu X. Near-Infrared- and pH-Responsive System for Reversible Cell Adhesion using Graphene/Gold Nanorods Functionalized with i-Motif DNA. Angew Chem Int Ed Engl 2013; 52:6726-30. [DOI: 10.1002/anie.201302048] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Indexed: 11/08/2022]
|
19
|
Li W, Wang J, Ren J, Qu X. Near-Infrared- and pH-Responsive System for Reversible Cell Adhesion using Graphene/Gold Nanorods Functionalized with i-Motif DNA. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
An Q, Brinkmann J, Huskens J, Krabbenborg S, de Boer J, Jonkheijm P. A Supramolecular System for the Electrochemically Controlled Release of Cells. Angew Chem Int Ed Engl 2012; 51:12233-7. [DOI: 10.1002/anie.201205651] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Indexed: 12/22/2022]
|
21
|
An Q, Brinkmann J, Huskens J, Krabbenborg S, de Boer J, Jonkheijm P. A Supramolecular System for the Electrochemically Controlled Release of Cells. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205651] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|