1
|
Hayat A, Sohail M, Ali Shah Syed J, Al-Sehemi AG, Mohammed MH, Al-Ghamdi AA, Taha TA, Salem AlSalem H, Alenad AM, Amin MA, Palamanit A, Liu C, Nawawi WI, Tariq Saeed Chani M, Muzibur Rahman M. Recent Advancement of the Current Aspects of g-C 3 N 4 for its Photocatalytic Applications in Sustainable Energy System. CHEM REC 2022; 22:e202100310. [PMID: 35138017 DOI: 10.1002/tcr.202100310] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Being one of the foremost enticing and intriguing innovations, heterogeneous photocatalysis has also been used to effectively gather, transform, and conserve sustainable sun's radiation for the production of efficient and clean fossil energy as well as a wide range of ecological implications. The generation of solar fuel-based water splitting and CO2 photoreduction is excellent for generating alternative resources and reducing global warming. Developing an inexpensive photocatalyst can effectively split water into hydrogen (H2 ), oxygen (O2 ) sources, and carbon dioxide (CO2 ) into fuel sources, which is a crucial problem in photocatalysis. The metal-free g-C3 N4 photocatalyst has a high solar fuel generation potential. This review covers the most recent advancements in g-C3 N4 preparation, including innovative design concepts and new synthesis methods, and novel ideas for expanding the light absorption of pure g-C3 N4 for photocatalytic application. Similarly, the main issue concerning research and prospects in photocatalysts based g-C3 N4 was also discussed. The current dissertation provides an overview of comprehensive understanding of the exploitation of the extraordinary systemic and characteristics, as well as the fabrication processes and uses of g-C3 N4 .
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen, 518055, People's Republic of China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Jawad Ali Shah Syed
- Department of Material Science and Engineering, College of Engineering and Applied Sciences, Nanjing University
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed H Mohammed
- Department of Physics, College of Science, Southern Illinois University, Carbondale, IL, 62901, USA.,Department of Physics, College of Science, University of Thi Qar, Nassiriya, 64000, IRAQ
| | - Ahmed A Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - T A Taha
- Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, 2014, Saudi Arabia.,Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, 2014, Saudi Arabia
| | - Huda Salem AlSalem
- Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - Asma M Alenad
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla, 90110, Thailand
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Shenzhen, 518055, People's Republic of China
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, 02600, Arau Perlis, Malaysia
| | - Muhammad Tariq Saeed Chani
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Muzibur Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
2
|
|
3
|
Evans KJ, Mansell SM. Functionalised N-Heterocyclic Carbene Ligands in Bimetallic Architectures. Chemistry 2020; 26:5927-5941. [PMID: 31981386 PMCID: PMC7317719 DOI: 10.1002/chem.201905510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Indexed: 12/18/2022]
Abstract
N-Heterocyclic carbenes (NHCs) have become immensely successful ligands in coordination chemistry and homogeneous catalysis due to their strong terminal σ-donor properties. However, by targeting NHC ligands with additional functionalisation, a new area of NHC coordination chemistry has developed that has enabled NHCs to be used to build up bimetallic and multimetallic architectures. This minireview covers the development of functionalised NHC ligands that incorporate additional donor sites in order to coordinate two or more metal atoms. This can be through the N-atom of the NHC ring, through a donor group attached to the N-atom or the carbon backbone, coordination of the π-bond or an annulated π-donor on the backbone, or through direct metalation of the backbone.
Collapse
Affiliation(s)
- Kieren J. Evans
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | | |
Collapse
|
4
|
Tulewicz A, Wolska-Pietkiewicz M, Jędrzejewska M, Ratajczyk T, Justyniak I, Lewiński J. Towards Extended Zinc Ethylsulfinate Networks by Stepwise Insertion of Sulfur Dioxide into Zn-C Bonds. Chemistry 2019; 25:14072-14080. [PMID: 31379036 DOI: 10.1002/chem.201902733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/31/2019] [Indexed: 11/06/2022]
Abstract
The ability to utilize polluting gases in efficient metal-mediated transformations is one of the most pressing challenges of modern chemistry. Despite numerous studies on the insertion of SO2 into M-C bonds, the chemical reaction of SO2 with organozinc compounds remains little explored. To fill this gap, we report here the systematic study of the reaction of Et2 Zn towards SO2 as well as the influence of Lewis bases on the reaction course. Whereas the equimolar reaction provided a novel example of a structurally characterized organozinc ethylsulfinate compound of general formula [(EtSO2 )ZnEt]n , the utilization of an excess of SO2 led to the formation of the zinc(II) bis(ethylsulfinate) compound [(EtSO2 )2 Zn]n . Moreover, we have discovered that the presence of N-donor Lewis bases represents an efficient tool for the preparation of extended zinc ethylsulfinates, which in turn led to the formation of 1D [(EtSO2 ZnEt)2 (hmta)]n and 2D [((EtSO2 )2 Zn)2 (DABCO)]n ⋅solv (in which solv=THF or toluene, hmta= hexamethylenetetramine, and DABCO=1,4-diazabicyclo[2.2.2]octane) coordination polymers, respectively. The results of DFT calculations on the reactivity of SO2 towards selected Zn-C reactive species as well as the role of an N-donor Lewis base on the stabilization of the transition states complement the discussion.
Collapse
Affiliation(s)
- Adam Tulewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | | | - Maria Jędrzejewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.,Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
5
|
Evans KJ, Mansell SM. Synergic Deprotonation Generates Alkali-Metal Salts of Tethered Fluorenide-NHC Ligands Co-Complexed to Alkali-Metal Amides. Chemistry 2019; 25:3766-3769. [PMID: 30667554 PMCID: PMC6492165 DOI: 10.1002/chem.201806278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 11/23/2022]
Abstract
Synergic combinations of alkali-metal hydrocarbyl/amide reagents were used to synthesise saturated N-heterocyclic carbene (NHC) ligands tethered to a fluorenide anion through deprotonation of a spirocyclic precursor, whereas conventional bases were not successful. The Li2 derivatives displayed a bridging amide between two Li atoms within the fluorenide-NHC pocket, whereas the Na2 and K2 analogues displayed extended solid-state structures with the fluorenide-NHC ligand chelating one alkali metal centre.
Collapse
Affiliation(s)
- Kieren J. Evans
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | | |
Collapse
|
6
|
Hernán-Gómez A, Uzelac M, Baillie SE, Armstrong DR, Kennedy AR, Fuentes MÁ, Hevia E. Molecular Manipulations of a Utility Nitrogen-Heterocyclic Carbene by Sodium Magnesiate Complexes and Transmetallation Chemistry with Gold Complexes. Chemistry 2018; 24:10541-10549. [PMID: 29750849 DOI: 10.1002/chem.201802008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Indexed: 01/17/2023]
Abstract
Expanding the scope and applications of anionic N-heterocyclic carbenes (NHCs), a novel series of magnesium NHC complexes is reported using a mixed sodium-magnesium approach. Sequential reactivity of classical imidazol- 2-ylidene carbene IPr with NaR and MgR2 (R=CH2 SiMe3 ) affords [(THF)3 Na(μ-IPr- )MgR2 (THF)] (2) [IPr- =:C{[N(2,6-iPr2 C6 H3 )]2 CHC] containing an anionic NHC ligand, whereas surprisingly sodium magnesiate [NaMgR3 ] fails to deprotonate IPr affording instead the redistribution coordination adduct [IPr2 Na2 MgR4 ] (1). Compound 2 undergoes selective C2-methylation when treated with MeOTf furnishing novel abnormal NHC complex [{aIPrMe MgR2 }2 ] (3). Dissolving 3 in THF led to the dissociation of this complex into MgR2 and aIPrMe with the latter isomerizing to the olefinic NHC IPr=CH2 . The ability of 2 and 3 to transfer their anionic and abnormal NHC ligands, respectively to AuI metal fragments has been investigated allowing the isolation and structural characterization of [RAu(μ-IPr- )MgR(THF)2 ] (4) and [aIPrMe AuR] (5) respectively. In both cases transfer of an alkyl R group is observed. However while 3 can also transfer its abnormal NHC ligand to give 5, in 4 the anionic NHC still remains coordinated to Mg via its C4 position, whereas the {AuR} fragment occupies the C2 position previously filled by a donor-solvated {Na(THF)3 }+ cation.
Collapse
Affiliation(s)
- Alberto Hernán-Gómez
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Marina Uzelac
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Sharon E Baillie
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - David R Armstrong
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Alan R Kennedy
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - M Ángeles Fuentes
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Eva Hevia
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
7
|
Specklin D, Fliedel C, Gourlaouen C, Bruyere J, Avilés T, Boudon C, Ruhlmann L, Dagorne S. N‐Heterocyclic Carbene Based Tri‐organyl‐Zn–Alkyl Cations: Synthesis, Structures, and Use in CO
2
Functionalization. Chemistry 2017; 23:5509-5519. [DOI: 10.1002/chem.201605907] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/17/2017] [Indexed: 01/18/2023]
Affiliation(s)
- David Specklin
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
| | - Christophe Fliedel
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa 2829-516 Caparica Portugal
| | - Christophe Gourlaouen
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
| | - Jean‐Charles Bruyere
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
| | - Teresa Avilés
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa 2829-516 Caparica Portugal
| | - Corinne Boudon
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
| | - Laurent Ruhlmann
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
| | - Samuel Dagorne
- Institut de Chimie de Strasbourg, CNRS Université de Strasbourg 1, rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
8
|
Uzelac M, Kennedy AR, Hernán-Gómez A, Fuentes MÁ, Hevia E. Heavier Alkali-metal Gallates as Platforms for Accessing Functionalized Abnormal NHC Carbene-Gallium Complexes. Z Anorg Allg Chem 2016. [DOI: 10.1002/zaac.201600310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marina Uzelac
- WestCHEM; Department of Pure and Applied Chemistry; University of Strathclyde; G1 1XL Glasgow UK
| | - Alan R. Kennedy
- WestCHEM; Department of Pure and Applied Chemistry; University of Strathclyde; G1 1XL Glasgow UK
| | - Alberto Hernán-Gómez
- WestCHEM; Department of Pure and Applied Chemistry; University of Strathclyde; G1 1XL Glasgow UK
| | - M. Ángeles Fuentes
- WestCHEM; Department of Pure and Applied Chemistry; University of Strathclyde; G1 1XL Glasgow UK
| | - Eva Hevia
- WestCHEM; Department of Pure and Applied Chemistry; University of Strathclyde; G1 1XL Glasgow UK
| |
Collapse
|
9
|
Schnee G, Nieto Faza O, Specklin D, Jacques B, Karmazin L, Welter R, Silva López C, Dagorne S. Normal-to-Abnormal NHC Rearrangement of AlIII, GaIII, and InIIITrialkyl Complexes: Scope, Mechanism, Reactivity Studies, and H2Activation. Chemistry 2015; 21:17959-72. [DOI: 10.1002/chem.201503000] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 11/10/2022]
|
10
|
Martínez‐Martínez AJ, Fuentes MÁ, Hernán‐Gómez A, Hevia E, Kennedy AR, Mulvey RE, O'Hara CT. Alkali‐Metal‐Mediated Magnesiations of an N‐Heterocyclic Carbene: Normal, Abnormal, and “Paranormal” Reactivity in a Single Tritopic Molecule. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Antonio J. Martínez‐Martínez
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (UK)
| | - M. Ángeles Fuentes
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (UK)
| | - Alberto Hernán‐Gómez
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (UK)
| | - Eva Hevia
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (UK)
| | - Alan R. Kennedy
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (UK)
| | - Robert E. Mulvey
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (UK)
| | - Charles T. O'Hara
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL (UK)
| |
Collapse
|
11
|
Martínez-Martínez AJ, Fuentes MÁ, Hernán-Gómez A, Hevia E, Kennedy AR, Mulvey RE, O'Hara CT. Alkali-Metal-Mediated Magnesiations of an N-Heterocyclic Carbene: Normal, Abnormal, and “Paranormal” Reactivity in a Single Tritopic Molecule. Angew Chem Int Ed Engl 2015; 54:14075-9. [DOI: 10.1002/anie.201507586] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 01/12/2023]
|
12
|
Ghadwal RS, Reichmann SO, Carl E, Herbst-Irmer R. Synthesis and structural investigation of R2Si (R = Me, Ph) bridged di-N-heterocyclic carbenes. Dalton Trans 2014; 43:13704-10. [DOI: 10.1039/c4dt01681e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Jochmann P, Stephan DW. Zincocene and Dizincocene N-Heterocyclic Carbene Complexes and Catalytic Hydrogenation of Imines and Ketones. Chemistry 2014; 20:8370-8. [DOI: 10.1002/chem.201402875] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Indexed: 11/08/2022]
|
14
|
Sen TK, Sau SC, Mukherjee A, Hota PK, Mandal SK, Maity B, Koley D. Abnormal N-heterocyclic carbene main group organometallic chemistry: a debut to the homogeneous catalysis. Dalton Trans 2013; 42:14253-60. [DOI: 10.1039/c3dt51802g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|