1
|
Saladrigas M, Gómez-Bengoa E, Bonjoch J, Bradshaw B. Four-Step Synthesis of (-)-4-epi-Presilphiperfolan-8α-ol by Intramolecular Iron Hydride Atom Transfer-Mediated Ketone-Alkene Coupling and Studies to Access trans-Hydrindanols with a Botryane Scaffold. Chemistry 2023; 29:e202203286. [PMID: 36537992 DOI: 10.1002/chem.202203286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
From an (R)-(+)-pulegone-derived building block that incorporates the stereo-defined tertiary carbon bearing a methyl group, as found in the targeted sesquiterpenoid, a four-step synthesis of (-)-4-epi-presilphiperfolan-8-α-ol was achieved. The key processes involved are a ring-closing metathesis leading to a bridged alkene-tethered ketone and its subsequent FeIII -mediated metal-hydride atom transfer (MHAT) transannular cyclization. This synthetic method, implying an irreversible addition of a carbon-centered radical upon a ketone by means of a hydrogen atom transfer upon the alkoxy radical intermediate, was also applied in the synthesis of trans-fused hydrindanols structurally related to botrydial compounds.
Collapse
Affiliation(s)
- Mar Saladrigas
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Enrique Gómez-Bengoa
- Departamento de Química Orgánica I, Universidad del País Vasco, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Josep Bonjoch
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Ben Bradshaw
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| |
Collapse
|
2
|
Li H, Zhang J, She X. The Total Synthesis of Diquinane-Containing Natural Products. Chemistry 2021; 27:4839-4858. [PMID: 32955141 DOI: 10.1002/chem.202003741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Indexed: 12/18/2022]
Abstract
Diquinane or bicyclo[3.3.0]octane is a conspicuous structural unit existing in the carbo-frameworks of a wide range of natural products such as alkaloids and terpenoids. These diquinane-containing molecules not merely exhibit intriguing architectures, but also showcase a broad spectrum of significant bioactivities, which draw widespread attention from the global synthetic community. During the past decade, with an aim to accomplish the total syntheses of such specified cornucopias of natural products, a variety of elegant strategies for construction of the diquinane ring system have been disclosed. In this Minireview, the achievements on this subject in the timeline from 2010 to June 2020 are demonstrated and it is discussed how the diquinane unit is strategically forged in the context of the specific target structure. In addition, impacts of the selected works to the field of natural product total synthesis is highlighted and the particular outlook of diquinane-containing natural product synthesis is provided.
Collapse
Affiliation(s)
- Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, Gansu, P. R. China
| | - Jing Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, Gansu, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, Gansu, P. R. China
| |
Collapse
|
3
|
Mohammadkhani L, Heravi MM. Applications of Transition-Metal-Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update. CHEM REC 2020; 21:29-68. [PMID: 33206466 DOI: 10.1002/tcr.202000086] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/14/2023]
Abstract
Metal-catalyzed asymmetric allylic substitution (AAS) reaction is one of the most synthetically useful reactions catalyzed by metal complexes for the formation of carbon-carbon and carbon-heteroatom bonds. It comprises the substitution of allylic substrates with a wide range of nucleophiles or SN 2'-type allylic substitution, which results in the formation of the above-mentioned bonds with high levels of enantioselective induction. AAS reaction tolerates a broad range of functional groups, thus has been successfully applied in the asymmetric synthesis of a wide range of optically pure compounds. This reaction has been extensively used in the total synthesis of several complex molecules, especially natural products. In this review, we try to highlight the applications of metal (Pd, Ir, Mo, or Cu)-catalyzed AAS reaction in the total synthesis of the biologically active natural products, as a key step, updating the subject from 2003 till date.
Collapse
Affiliation(s)
- Leyla Mohammadkhani
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| |
Collapse
|
4
|
Junk L, Kazmaier U. The Allylic Alkylation of Ketone Enolates. ChemistryOpen 2020; 9:929-952. [PMID: 32953384 PMCID: PMC7482671 DOI: 10.1002/open.202000175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/03/2020] [Indexed: 01/14/2023] Open
Abstract
The palladium-catalyzed allylic alkylation of non-stabilized ketone enolates was thought for a long time to be not as efficient as the analogous reactions of stabilized enolates, e. g. of malonates and β-ketoesters. The field has experienced a rapid development during the last two decades, with a range of new, highly efficient protocols evolved. In this review, the early developments as well as current methods and applications of palladium-catalyzed ketone enolate allylations will be discussed.
Collapse
Affiliation(s)
- Lukas Junk
- Organic Chemistry ISaarland UniversityCampus C4.266123SaarbrückenGermany
| | - Uli Kazmaier
- Organic Chemistry ISaarland UniversityCampus C4.266123SaarbrückenGermany
| |
Collapse
|
5
|
Pierrot D, Marek I. Synthesis of Enantioenriched Vicinal Tertiary and Quaternary Carbon Stereogenic Centers within an Acyclic Chain. Angew Chem Int Ed Engl 2019; 59:36-49. [DOI: 10.1002/anie.201903188] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 11/08/2022]
Affiliation(s)
- David Pierrot
- The Mallat Family Laboratory of Organic Chemistry Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200009 Israel
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200009 Israel
| |
Collapse
|
6
|
Pierrot D, Marek I. Synthese enantiomerenangereicherter, vicinaler tertiärer und quartärer Kohlenstoff‐Stereozentren innerhalb einer acyclischen Kette. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- David Pierrot
- The Mallat Family Laboratory of Organic Chemistry Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200009 Israel
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200009 Israel
| |
Collapse
|
7
|
Hethcox JC, Shockley SE, Stoltz BM. Enantioselective Synthesis of Vicinal All-Carbon Quaternary Centers via Iridium-Catalyzed Allylic Alkylation. Angew Chem Int Ed Engl 2018; 57:8664-8667. [PMID: 29750856 PMCID: PMC6033654 DOI: 10.1002/anie.201804820] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 01/08/2023]
Abstract
The development of the first enantioselective transition-metal-catalyzed allylic alkylation providing access to acyclic products bearing vicinal all-carbon quaternary centers is disclosed. The iridium-catalyzed allylic alkylation reaction proceeds with excellent yields and selectivities for a range of malononitrile-derived nucleophiles and trisubstituted allylic electrophiles. The utility of these sterically congested products is explored through a series of diverse chemo- and diastereoselective product transformations to afford a number of highly valuable, densely functionalized building blocks, including those containing vicinal all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- J Caleb Hethcox
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA, 91125, USA
| | - Samantha E Shockley
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA, 91125, USA
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA, 91125, USA
| |
Collapse
|
8
|
Hethcox JC, Shockley SE, Stoltz BM. Enantioselective Synthesis of Vicinal All‐Carbon Quaternary Centers via Iridium‐Catalyzed Allylic Alkylation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804820] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- J. Caleb Hethcox
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd, MC 101-20 Pasadena CA 91125 USA
| | - Samantha E. Shockley
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd, MC 101-20 Pasadena CA 91125 USA
| | - Brian M. Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd, MC 101-20 Pasadena CA 91125 USA
| |
Collapse
|
9
|
Zhang Z, Li Y, Zhao D, He Y, Gong J, Yang Z. A Concise Synthesis of Presilphiperfolane Core through a Tandem TMTU-Co-Catalyzed Pauson-Khand Reaction and a 6π Electrocyclization Reaction (TMTU=Tetramethyl Thiourea). Chemistry 2017; 23:1258-1262. [DOI: 10.1002/chem.201605438] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Zichun Zhang
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Yuanhe Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Beijing National Laboratory for Molecular Science (BNLMS); College of Chemistry and Molecular Engineering
- Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Dandan Zhao
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Yingdong He
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Jianxian Gong
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Zhen Yang
- Laboratory of Chemical Genomics; School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Beijing National Laboratory for Molecular Science (BNLMS); College of Chemistry and Molecular Engineering
- Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| |
Collapse
|
10
|
Marziale AN, Duquette DC, Craig RA, Kim KE, Liniger M, Numajiri Y, Stoltz BM. An Efficient Protocol for the Palladium-catalyzed Asymmetric Decarboxylative Allylic Alkylation Using Low Palladium Concentrations and a Palladium(II) Precatalyst. Adv Synth Catal 2015; 357:2238-2245. [PMID: 27042171 DOI: 10.1002/adsc.201500253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Enantioselective catalytic allylic alkylation for the synthesis of 2-alkyl-2-allylcycloalkanones and 3,3-disubstituted pyrrolidinones, piperidinones and piperazinones has been previously reported by our laboratory. The efficient construction of chiral all-carbon quaternary centers by allylic alkylation was previously achieved with a catalyst derived in situ from zero valent palladium sources and chiral phosphinooxazoline (PHOX) ligands. We now report an improved reaction protocol with broad applicability among different substrate classes in industry-compatible reaction media using loadings of palladium(II) acetate as low as 0.075 mol % and the readily available chiral PHOX ligands. The novel and highly efficient procedure enables facile scale-up of the reaction in an economical and sustainable fashion.
Collapse
Affiliation(s)
- Alexander N Marziale
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125, USA
| | - Douglas C Duquette
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125, USA
| | - Robert A Craig
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125, USA
| | - Kelly E Kim
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125, USA
| | - Marc Liniger
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125, USA
| | - Yoshitaka Numajiri
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125, USA
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
Hong AY, Stoltz BM. Biosynthesis and chemical synthesis of presilphiperfolanol natural products. Angew Chem Int Ed Engl 2014; 53:5248-60. [PMID: 24771653 PMCID: PMC4334158 DOI: 10.1002/anie.201309494] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Indexed: 11/09/2022]
Abstract
Presilphiperfolanols constitute a family of biosynthetically important sesquiterpenes which can rearrange to diverse sesquiterpenoid skeletons. While the origin of these natural products can be traced to simple linear terpene precursors, the details of the enzymatic cyclization mechanism that forms the stereochemically dense tricyclic skeleton has required extensive biochemical, computational, and synthetic investigation. Parallel efforts to prepare the unique and intriguing structures of these compounds by total synthesis have also inspired novel strategies, thus resulting in four synthetic approaches and two completed syntheses. While the biosynthesis and chemical synthesis studies performed to date have provided much insight into the role and properties of these molecules, emerging questions regarding the biosynthesis of newer members of the family and subtle details of rearrangement mechanisms have yet to be explored.
Collapse
Affiliation(s)
- Allen Y. Hong
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA)
| | - Brian M. Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA)
| |
Collapse
|
12
|
Hong AY, Stoltz BM. Biosynthese und chemische Synthese von Presilphiperfolanolen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Bennett NB, Stoltz BM. A unified approach to the daucane and sphenolobane bicyclo[5.3.0]decane core: enantioselective total syntheses of daucene, daucenal, epoxydaucenal B, and 14-para-anisoyloxydauc-4,8-diene. Chemistry 2013; 19:17745-50. [PMID: 24302464 PMCID: PMC3927641 DOI: 10.1002/chem.201302353] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Indexed: 11/07/2022]
Abstract
Access to the bicyclo[5.3.0]decane core found in the daucane and sphenolobane terpenoids via a key enone intermediate enables the enantioselective total syntheses of daucene, daucenal, epoxydaucenal B, and 14-para-anisoyloxydauc-4,8-diene. Central aspects include a catalytic asymmetric alkylation followed by a ring contraction and ring-closing metathesis to generate the five- and seven-membered rings, respectively.
Collapse
Affiliation(s)
- Nathan B. Bennett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA), Fax: (+1) 626-395-8436
| | - Brian M. Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA), Fax: (+1) 626-395-8436
| |
Collapse
|
14
|
Hong AY, Stoltz BM. The Construction of All-Carbon Quaternary Stereocenters by Use of Pd-Catalyzed Asymmetric Allylic Alkylation Reactions in Total Synthesis. European J Org Chem 2013; 2013:2745-2759. [PMID: 24944521 PMCID: PMC4059687 DOI: 10.1002/ejoc.201201761] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Indexed: 11/08/2022]
Abstract
All-carbon quaternary stereocenters have posed significant challenges in the synthesis of complex natural products. These important structural motifs have inspired the development of broadly applicable palladium-catalyzed asymmetric allylic alkylation reactions of unstabilized non-biased enolates for the synthesis of enantioenriched α-quaternary products. This microreview outlines key considerations in the application of palladium-catalyzed asymmetric allylic alkylation reactions and presents recent total syntheses of complex natural products that have employed these powerful transformations for the direct, catalytic, enantioselective construction of all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- Allen Y. Hong
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 101-20, Pasadena, CA 91125, USA, Homepage: http://stoltz.caltech.edu
| | - Brian M. Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 101-20, Pasadena, CA 91125, USA, Homepage: http://stoltz.caltech.edu
| |
Collapse
|
15
|
Bennett NB, Duquette DC, Kim J, Liu WB, Marziale AN, Behenna DC, Virgil SC, Stoltz BM. Expanding insight into asymmetric palladium-catalyzed allylic alkylation of N-heterocyclic molecules and cyclic ketones. Chemistry 2013; 19:4414-8. [PMID: 23447555 PMCID: PMC3815597 DOI: 10.1002/chem.201300030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Indexed: 11/08/2022]
Abstract
Eeny, meeny, miny ... enaminones! Lactams and imides have been shown to consistently provide enantioselectivities substantially higher than other substrate classes previously investigated in the palladium-catalyzed asymmetric decarboxylative allylic alkylation. Several new substrates have been designed to probe the contributions of electronic, steric, and stereoelectronic factors that distinguish the lactam/imide series as superior alkylation substrates (see scheme). These studies culminated in marked improvements on carbocyclic allylic alkylation substrates.
Collapse
Affiliation(s)
| | | | - Jimin Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA)
| | - Wen-Bo Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA)
| | - Alexander N. Marziale
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA)
| | - Douglas C. Behenna
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA)
| | - Scott C. Virgil
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA)
| | - Brian M. Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125 (USA)
| |
Collapse
|
16
|
Li Z, Zhang S, Wu S, Shen X, Zou L, Wang F, Li X, Peng F, Zhang H, Shao Z. Enantioselective Palladium-Catalyzed Decarboxylative Allylation of Carbazolones: Total Synthesis of (−)-Aspidospermidine and (+)-Kopsihainanine A. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209878] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Li Z, Zhang S, Wu S, Shen X, Zou L, Wang F, Li X, Peng F, Zhang H, Shao Z. Enantioselective Palladium-Catalyzed Decarboxylative Allylation of Carbazolones: Total Synthesis of (−)-Aspidospermidine and (+)-Kopsihainanine A. Angew Chem Int Ed Engl 2013; 52:4117-21. [DOI: 10.1002/anie.201209878] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Indexed: 11/10/2022]
|