1
|
Li Y, Lu J, Deng X, Wang X, Jia F, Zhong S, Cui X, Pan Z, Shao L, Wu Y. Self-assembling combretastatin A4 incorporated protamine/nanodiamond hybrids for combined anti-angiogenesis and mild photothermal therapy in liver cancer. NANOTECHNOLOGY 2021; 32:465101. [PMID: 34371485 DOI: 10.1088/1361-6528/ac1be0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Tumor angiogenesis has been identified as an important factor in the development and progression of tumors, and anti-angiogenesis therapy has been recognized as an effective tumor therapy pattern. The unique characteristics of nanodiamonds (NDs) have been explored for photothermal therapy (PTT) against cancer, while the efficiency of mild PTT mediated by bare NDs was limited. The combination of different therapies into a single nanoplatform has shown great potential for synergistic cancer treatment. In this investigation, we integrated hydrophobic antiangiogenesis agent combretastatin A4 (CA4) into the protamine sulfate (PS) functionalized NDs hybrids (NDs@PS) with a noncovalent self-assembling method (CA4-NDs@PS) for potential combined anti-angiogenesis and mild PTT in liver cancer. The resulted CA4-NDs@PS NDs exhibited high drug loading ability, good dispersibility and colloidal stability. The near-infrared (NIR) laser irradiation could trigger the release of CA4 from CA4-NDs@PS NDs and elevate the temperature of CA4-NDs@PS NDs aqueous solution.In vitroresults illustrated that CA4-NDs@PS coupled with laser irradiation could remarkably enhance HepG-2 cells killing efficiency, leading to an enhanced photocytotoxicity. Furthermore,in vivoexperiments revealed that CA4-NDs@PS exhibited a highly synergistic anticancer efficacy with NIR laser irradiation in HepG-2 tumor-bearing mice. Altogether, our present study fabricated a novel NDs@PS-based nanoplatform for combined anti-tumor angiogenesis and mild PTT against liver cancer.
Collapse
Affiliation(s)
- Yunhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
| | - Xiongwei Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
| | - Xuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Fan Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shihan Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
| | - Xinyue Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
| | - Zian Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Leihou Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
- Beijing Key Laboratory of Organic Materials Testing Technology and Quality Evaluation, Beijing Center for Physical and Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
2
|
Zhang M, Wang T, Zhang L, Li L, Wang C. Near‐Infrared Light and pH‐Responsive Polypyrrole@Polyacrylic acid/Fluorescent Mesoporous Silica Nanoparticles for Imaging and Chemo‐Photothermal Cancer Therapy. Chemistry 2015; 21:16162-71. [DOI: 10.1002/chem.201502177] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Manjie Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (P.R. China)
| | - Tingting Wang
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022 (P.R. China)
| | - Lingyu Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (P.R. China)
| | - Lu Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (P.R. China)
| | - Chungang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (P.R. China)
| |
Collapse
|
3
|
Su S, Tian Y, Li Y, Ding Y, Ji T, Wu M, Wu Y, Nie G. "Triple-punch" strategy for triple negative breast cancer therapy with minimized drug dosage and improved antitumor efficacy. ACS NANO 2015; 9:1367-1378. [PMID: 25611071 DOI: 10.1021/nn505729m] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Effective therapeutics against triple negative breast cancer (TNBC), which has no standard-of-care therapy, needs to be developed urgently. Here we demonstrated a strategy of integrating indocyanine green (ICG), paclitaxel (PTX), and survivin siRNA into one thermosensitive poly(2-(2-methoxyethoxy)ethyl methacrylate-co-oligo(ethylene glycol) methacrylate)-co-2-(dimethylamino)ethyl methacrylate-b-poly(D,L-lactide-co-glycolide) (P (MEO2MA-co-OEGMA-co-DMAEMA)-b-PLGA) nanoparticle (NP-IPS) for triple-punch strategy against TNBC. The NP-IPS significantly enhanced the stability of ICG. Controlled release of the PTX in tumor regions was triggered by the hyperthermia produced by laser irradiated ICG. The NP-IPS exhibited remarkable antitumor efficacy (almost complete ablation of the tumor xenografts) due to the combinational effects of chemotherapy, photothermal therapy, and gene therapy with low drug dose (ICG, 0.32 μmol/kg; PTX, 0.54 μmol/kg; siRNA, 1.5 mg/kg) and minimal side effects. Taken together, our current study demonstrates a nanoplatform for triple-therapy, which reveals a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Shishuai Su
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Moitra P, Kumar K, Kondaiah P, Bhattacharya S. Efficacious Anticancer Drug Delivery Mediated by a pH-Sensitive Self-Assembly of a Conserved Tripeptide Derived from Tyrosine Kinase NGF Receptor. Angew Chem Int Ed Engl 2013; 53:1113-7. [DOI: 10.1002/anie.201307247] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 11/04/2013] [Indexed: 01/08/2023]
|