Zhao C, Lei D, Gan LH, Zhang ZX, Wang CR. Theoretical study on experimentally detected Sc2S@C84.
Chemphyschem 2014;
15:2780-4. [PMID:
25045089 DOI:
10.1002/cphc.201402225]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 11/10/2022]
Abstract
Sc(2)S@C(84) has recently been detected but not structurally characterized.1 Density functional theory calculations on C(84) and Sc(2)S@C(84) show that the favored isomer of Sc(2)S@C84 shares the same parent cage as Sc(2)C2@C(84), whereas Sc(2)S@C(84):51383, which violates the isolated-pentagon rule, is the second lowest energy isomer with the widest HOMO-LUMO gap and shows high kinetic stability. The analysis shows that Sc(2)S@C(84):51575 is favored when the temperature exceeds 2,800 K and it can transform into the most favorable isomer Sc(2)S@C(84):51591. Molecular orbital analysis indicates that both Sc(2)S and Sc(2)C(2) formally transfer four electrons to the cage, and quantum theory of atoms in molecules analysis demonstrates that there is a covalent interaction between Sc(2)S and C(84):51591. The IR spectra of Sc(2)S@C(84) are provided to aid future structural identification.
Collapse