1
|
Barasinski M, Garnweitner G. Aufreinigung von Nano‐ und Submikronpartikeln durch präparative Gelelektrophorese. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Matthäus Barasinski
- Technische Universität Braunschweig Institut für Partikeltechnik und Laboratory for Emerging Nanometrology 38104 Braunschweig Deutschland
| | - Georg Garnweitner
- Technische Universität Braunschweig Institut für Partikeltechnik und Laboratory for Emerging Nanometrology 38104 Braunschweig Deutschland
| |
Collapse
|
2
|
Tang Y, Liu L, Nong Q, Guo H, Zhou Q, Wang D, Yin Y, Shi J, He B, Hu L, Jiang G. Sensitive determination of metalloprotein in salt-rich matrices by size exclusion chromatography coupled with inductively coupled plasma-mass spectrometry. J Chromatogr A 2022; 1677:463303. [DOI: 10.1016/j.chroma.2022.463303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
|
3
|
Abstract
Metals are essential components in life processes and participate in many important biological processes. Dysregulation of metal homeostasis is correlated with many diseases. Metals are also frequently incorporated into diagnosis and therapeutics. Understanding of metal homeostasis under (patho)physiological conditions and the molecular mechanisms of action of metallodrugs in biological systems has positive impacts on human health. As an emerging interdisciplinary area of research, metalloproteomics involves investigating metal-protein interactions in biological systems at a proteome-wide scale, has received growing attention, and has been implemented into metal-related research. In this review, we summarize the recent advances in metalloproteomics methodologies and applications. We also highlight emerging single-cell metalloproteomics, including time-resolved inductively coupled plasma mass spectrometry, mass cytometry, and secondary ion mass spectrometry. Finally, we discuss future perspectives in metalloproteomics, aiming to attract more original research to develop more advanced methodologies, which could be utilized rapidly by biochemists or biologists to expand our knowledge of how metal functions in biology and medicine. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| |
Collapse
|
4
|
Neuditschko B, Legin AA, Baier D, Schintlmeister A, Reipert S, Wagner M, Keppler BK, Berger W, Meier‐Menches SM, Gerner C. Die Wechselwirkung mit ribosomalen Proteinen begleitet die Stressinduktion des Wirkstoffkandidaten BOLD-100/KP1339 im endoplasmatischen Retikulum. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:5121-5126. [PMID: 38505777 PMCID: PMC10947255 DOI: 10.1002/ange.202015962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/09/2022]
Abstract
AbstractDer metallhaltige Wirkstoff BOLD‐100/KP1339 zeigte bereits vielversprechende Resultate in verschiedenen In vitro‐ und In vivo‐Tumormodellen sowie in klinischen Studien. Der detaillierte Wirkmechanismus wurde jedoch noch nicht komplett aufgeklärt. Als entscheidende Wirkstoffeffekte kristallisierten sich kürzlich die Stressinduktion im endoplasmatischen Retikulum (ER) und die damit einhergehende Modulierung von HSPA5 (GRP78) heraus. Das spontane und stabile Addukt zwischen BOLD‐100 und menschlichem Serumalbumin wurde als Immobilisierungsstrategie ausgewählt, um einen chemoproteomischen Ansatz auszuführen, der die ribosomalen Proteine RPL10, RPL24 und den Transkriptionsfaktor GTF2I als potentielle Interaktoren dieser Ru(III)‐Verbindung identifizierten. Dieses Ergebnis wurde mit proteomischen und transkriptomischen Profiling‐Experimenten kombiniert, was die Interpretation einer ribosomalen Beeinträchtigung sowie der Induktion von ER‐Stress unterstützte. Die Bildung von Polyribosomen und begleitende ER‐Schwellungen in behandelten Krebszellen wurden zudem durch TEM‐Messungen bestätigt. Somit scheint eine direkte Wechselwirkung von BOLD‐100 mit ribosomalen Proteinen die ER‐Stressinduktion und die Modulierung von GRP78 in Krebszellen zu begleiten.
Collapse
Affiliation(s)
- Benjamin Neuditschko
- Institut für Anorganische ChemieFakultät für ChemieUniversität WienWähringer Str. 421090WienÖsterreich
- Institut für Analytische ChemieFakultät für ChemieUniversität WienWähringer Str. 381090WienÖsterreich
| | - Anton A. Legin
- Institut für Anorganische ChemieFakultät für ChemieUniversität WienWähringer Str. 421090WienÖsterreich
- Forschungsnetzwerk “Chemistry, Microbiology and Environmental Systems Science”Universität WienWähringer Str. 421090WienÖsterreich
| | - Dina Baier
- Institut für Anorganische ChemieFakultät für ChemieUniversität WienWähringer Str. 421090WienÖsterreich
- Institut für Krebsforschung und Comprehensive Cancer CenterUniversitätsklinik für Innere Medizin IMedizinische Universität WienBorschkegasse 8a1090WienÖsterreich
- Forschungscluster “Translational Cancer Therapy Research”Universität WienWähringer Str. 421090WienÖsterreich
| | - Arno Schintlmeister
- Forschungsnetzwerk “Chemistry, Microbiology and Environmental Systems Science”Universität WienWähringer Str. 421090WienÖsterreich
- Großgeräteeinrichtung für Umwelt- und Isotopen-MassenspektrometrieZentrum für Mikrobiologie und UmweltsystemwissenschaftUniversität WienAlthanstr. 141090WienÖsterreich
| | - Siegfried Reipert
- Core Facility für Cell Imaging und UltrastrukturforschungAlthanstr. 141090WienÖsterreich
| | - Michael Wagner
- Forschungsnetzwerk “Chemistry, Microbiology and Environmental Systems Science”Universität WienWähringer Str. 421090WienÖsterreich
- Großgeräteeinrichtung für Umwelt- und Isotopen-MassenspektrometrieZentrum für Mikrobiologie und UmweltsystemwissenschaftUniversität WienAlthanstr. 141090WienÖsterreich
| | - Bernhard K. Keppler
- Institut für Anorganische ChemieFakultät für ChemieUniversität WienWähringer Str. 421090WienÖsterreich
- Forschungsnetzwerk “Chemistry, Microbiology and Environmental Systems Science”Universität WienWähringer Str. 421090WienÖsterreich
- Forschungscluster “Translational Cancer Therapy Research”Universität WienWähringer Str. 421090WienÖsterreich
| | - Walter Berger
- Institut für Krebsforschung und Comprehensive Cancer CenterUniversitätsklinik für Innere Medizin IMedizinische Universität WienBorschkegasse 8a1090WienÖsterreich
- Forschungscluster “Translational Cancer Therapy Research”Universität WienWähringer Str. 421090WienÖsterreich
| | - Samuel M. Meier‐Menches
- Institut für Analytische ChemieFakultät für ChemieUniversität WienWähringer Str. 381090WienÖsterreich
- Forschungscluster “Translational Cancer Therapy Research”Universität WienWähringer Str. 421090WienÖsterreich
| | - Christopher Gerner
- Institut für Analytische ChemieFakultät für ChemieUniversität WienWähringer Str. 381090WienÖsterreich
- Joint Metabolome FacilityUniversität Wien und Medizinische Universität WienWähringer Str. 381090WienÖsterreich
| |
Collapse
|
5
|
Neuditschko B, Legin AA, Baier D, Schintlmeister A, Reipert S, Wagner M, Keppler BK, Berger W, Meier‐Menches SM, Gerner C. Interaction with Ribosomal Proteins Accompanies Stress Induction of the Anticancer Metallodrug BOLD-100/KP1339 in the Endoplasmic Reticulum. Angew Chem Int Ed Engl 2021; 60:5063-5068. [PMID: 33369073 PMCID: PMC7986094 DOI: 10.1002/anie.202015962] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 02/06/2023]
Abstract
The ruthenium-based anticancer agent BOLD-100/KP1339 has shown promising results in several in vitro and in vivo tumour models as well as in early clinical trials. However, its mode of action remains to be fully elucidated. Recent evidence identified stress induction in the endoplasmic reticulum (ER) and concomitant down-modulation of HSPA5 (GRP78) as key drug effects. By exploiting the naturally formed adduct between BOLD-100 and human serum albumin as an immobilization strategy, we were able to perform target-profiling experiments that revealed the ribosomal proteins RPL10, RPL24, and the transcription factor GTF2I as potential interactors of this ruthenium(III) anticancer agent. Integrating these findings with proteomic profiling and transcriptomic experiments supported ribosomal disturbance and concomitant induction of ER stress. The formation of polyribosomes and ER swelling of treated cancer cells revealed by TEM validated this finding. Thus, the direct interaction of BOLD-100 with ribosomal proteins seems to accompany ER stress-induction and modulation of GRP78 in cancer cells.
Collapse
Affiliation(s)
- Benjamin Neuditschko
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
| | - Anton A. Legin
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
- Research Network “Chemistry, Microbiology and Environmental Systems Science”University of ViennaWähringer Str. 421090ViennaAustria
| | - Dina Baier
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
- Institute of Cancer Research and Comprehensive Cancer CenterDepartment of Medicine IMedical University of ViennaBorschkegasse 8a1090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaWaehringer Str. 421090ViennaAustria
| | - Arno Schintlmeister
- Research Network “Chemistry, Microbiology and Environmental Systems Science”University of ViennaWähringer Str. 421090ViennaAustria
- Large-Instrument Facility for Environmental and Isotope Mass SpectrometryCentre for Microbiology and Environmental Systems ScienceUniversity of ViennaAlthanstr. 141090ViennaAustria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure ResearchAlthanstr. 141090ViennaAustria
| | - Michael Wagner
- Research Network “Chemistry, Microbiology and Environmental Systems Science”University of ViennaWähringer Str. 421090ViennaAustria
- Large-Instrument Facility for Environmental and Isotope Mass SpectrometryCentre for Microbiology and Environmental Systems ScienceUniversity of ViennaAlthanstr. 141090ViennaAustria
| | - Bernhard K. Keppler
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 421090ViennaAustria
- Research Network “Chemistry, Microbiology and Environmental Systems Science”University of ViennaWähringer Str. 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaWaehringer Str. 421090ViennaAustria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer CenterDepartment of Medicine IMedical University of ViennaBorschkegasse 8a1090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaWaehringer Str. 421090ViennaAustria
| | - Samuel M. Meier‐Menches
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”University of ViennaWaehringer Str. 421090ViennaAustria
| | - Christopher Gerner
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaWaehringer Str. 381090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University of ViennaWaehringer Str. 381090ViennaAustria
| |
Collapse
|
6
|
Analysis of silver-associated proteins in pathogen via combination of native SDS-PAGE, fluorescent staining, and inductively coupled plasma mass spectrometry. J Chromatogr A 2019; 1607:460393. [PMID: 31376982 DOI: 10.1016/j.chroma.2019.460393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 11/19/2022]
Abstract
Characterization of silver-associated proteins is important to elucidate underlined mechanisms of silver-containing materials against microbes. Gel electrophoresis based methods are the most popular and basic strategy for the analysis of biomolecules, i.e., proteins and nucleic acids. It solely provides molecular weights of analytes. Extending the method from molecular weight to elemental composition is highly desired when investigating metal-containing molecules. Herein, a gel electrophoresis based method combining native sodium dodecyl sulfate-polyacrylamide gel electrophoresis (native SDS-PAGE), fluorescent staining, and inductively coupled plasma mass spectrometry (ICP-MS) strategy was developed for separation and detection of silver-associated proteins. Two home-made silver-labeled proteins, carbonic anhydrase and ovalbumin, were used for validation of the strategy performance. Silver-associated proteins in Pseudomonas aeruginosa and Staphylococcus aureus treated with silver nanoparticles were further characterized by this method. Some well-known and new proteins were identified to associate to silver in both P. aeruginosa and S. aureus, demonstrating the feasibility of the developed strategy. In conclusion, the current study provides a convenient method for readily identification of silver-associated proteins in biological samples.
Collapse
|
7
|
Xia SA, Leng A, Lin Y, Wu L, Tian Y, Hou X, Zheng C. Integration of Flow Injection Capillary Liquid Electrode Discharge Optical Emission Spectrometry and Microplasma-Induced Vapor Generation: A System for Detection of Ultratrace Hg and Cd in a Single Drop of Human Whole Blood. Anal Chem 2019; 91:2701-2709. [DOI: 10.1021/acs.analchem.8b04222] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shu-an Xia
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Anqin Leng
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - Yao Lin
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yunfei Tian
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
8
|
Xu X, Wang H, Li H, Hu X, Zhang Y, Guan X, Toy PH, Sun H. S-Dimethylarsino-glutathione (darinaparsin®) targets histone H3.3, leading to TRAIL-induced apoptosis in leukemia cells. Chem Commun (Camb) 2019; 55:13120-13123. [DOI: 10.1039/c9cc07605k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone H3.3 was identified as an arsenic-binding protein of S-dimethylarsino-glutathione (ZIO-101, darinaparsin®) in leukemia cells by GE-ICP-MS, leading to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Haibo Wang
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Hongyan Li
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Xuqiao Hu
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Yu Zhang
- Department of Clinical Oncology
- Li Ka Shing Faculty of Medicine
- The University of Hong Kong
- P. R. China
| | - Xinyuan Guan
- Department of Clinical Oncology
- Li Ka Shing Faculty of Medicine
- The University of Hong Kong
- P. R. China
| | - Patrick H. Toy
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | - Hongzhe Sun
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| |
Collapse
|
9
|
Meier SM, Kreutz D, Winter L, Klose MHM, Cseh K, Weiss T, Bileck A, Alte B, Mader JC, Jana S, Chatterjee A, Bhattacharyya A, Hejl M, Jakupec MA, Heffeter P, Berger W, Hartinger CG, Keppler BK, Wiche G, Gerner C. An Organoruthenium Anticancer Agent Shows Unexpected Target Selectivity For Plectin. Angew Chem Int Ed Engl 2017; 56:8267-8271. [DOI: 10.1002/anie.201702242] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Samuel M. Meier
- Institut für Analytische Chemie; Universität Wien; Währinger Strasse 38 1090 Wien Austria
- Forschungsplattform “Translational Cancer Therapy Research”; Universität Wien und Medizinische Universität Wien; Austria
| | - Dominique Kreutz
- Institut für Analytische Chemie; Universität Wien; Währinger Strasse 38 1090 Wien Austria
| | - Lilli Winter
- Department of Biochemistry and Cell Biology MFPL; Universität Wien; Dr.-Bohr-Gasse 9 1030 Vienna Austria
| | - Matthias H. M. Klose
- Forschungsplattform “Translational Cancer Therapy Research”; Universität Wien und Medizinische Universität Wien; Austria
- Institut für Anorganische Chemie; Universität Wien; Austria
| | - Klaudia Cseh
- Institut für Anorganische Chemie; Universität Wien; Austria
| | | | - Andrea Bileck
- Institut für Analytische Chemie; Universität Wien; Währinger Strasse 38 1090 Wien Austria
| | - Beatrix Alte
- Institut für Krebsforschung; Medizinische Universität Wien; Austria
| | - Johanna C. Mader
- Institut für Analytische Chemie; Universität Wien; Währinger Strasse 38 1090 Wien Austria
| | - Samir Jana
- Department für Zoology; University of Calcutta; 35 Ballygunge Circular Road India
| | - Annesha Chatterjee
- Department für Zoology; University of Calcutta; 35 Ballygunge Circular Road India
| | | | - Michaela Hejl
- Institut für Anorganische Chemie; Universität Wien; Austria
| | - Michael A. Jakupec
- Forschungsplattform “Translational Cancer Therapy Research”; Universität Wien und Medizinische Universität Wien; Austria
- Institut für Anorganische Chemie; Universität Wien; Austria
| | - Petra Heffeter
- Forschungsplattform “Translational Cancer Therapy Research”; Universität Wien und Medizinische Universität Wien; Austria
- Institut für Krebsforschung; Medizinische Universität Wien; Austria
| | - Walter Berger
- Forschungsplattform “Translational Cancer Therapy Research”; Universität Wien und Medizinische Universität Wien; Austria
- Institut für Krebsforschung; Medizinische Universität Wien; Austria
| | | | - Bernhard K. Keppler
- Forschungsplattform “Translational Cancer Therapy Research”; Universität Wien und Medizinische Universität Wien; Austria
- Institut für Anorganische Chemie; Universität Wien; Austria
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology MFPL; Universität Wien; Dr.-Bohr-Gasse 9 1030 Vienna Austria
| | - Christopher Gerner
- Institut für Analytische Chemie; Universität Wien; Währinger Strasse 38 1090 Wien Austria
| |
Collapse
|
10
|
Meier SM, Kreutz D, Winter L, Klose MHM, Cseh K, Weiss T, Bileck A, Alte B, Mader JC, Jana S, Chatterjee A, Bhattacharyya A, Hejl M, Jakupec MA, Heffeter P, Berger W, Hartinger CG, Keppler BK, Wiche G, Gerner C. Ein Organoruthenium-Tumortherapeutikum mit unerwartet hoher Selektivität für Plectin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samuel M. Meier
- Institut für Analytische Chemie; Universität Wien; Währinger Straße 38 1090 Wien Österreich
- Forschungsplattform “Translational Cancer Therapy Research”; Universität Wien und Medizinische Universität Wien; Österreich
| | - Dominique Kreutz
- Institut für Analytische Chemie; Universität Wien; Währinger Straße 38 1090 Wien Österreich
| | - Lilli Winter
- Department of Biochemistry and Cell Biology MFPL; Universität Wien; Österreich
| | - Matthias H. M. Klose
- Forschungsplattform “Translational Cancer Therapy Research”; Universität Wien und Medizinische Universität Wien; Österreich
- Institut für Anorganische Chemie; Universität Wien; Österreich
| | - Klaudia Cseh
- Institut für Anorganische Chemie; Universität Wien; Österreich
| | | | - Andrea Bileck
- Institut für Analytische Chemie; Universität Wien; Währinger Straße 38 1090 Wien Österreich
| | - Beatrix Alte
- Institut für Krebsforschung; Medizinische Universität Wien; Österreich
| | - Johanna C. Mader
- Institut für Analytische Chemie; Universität Wien; Währinger Straße 38 1090 Wien Österreich
| | - Samir Jana
- Department of Zoology; University of Calcutta; Indien
| | | | | | - Michaela Hejl
- Institut für Anorganische Chemie; Universität Wien; Österreich
| | - Michael A. Jakupec
- Forschungsplattform “Translational Cancer Therapy Research”; Universität Wien und Medizinische Universität Wien; Österreich
- Institut für Anorganische Chemie; Universität Wien; Österreich
| | - Petra Heffeter
- Forschungsplattform “Translational Cancer Therapy Research”; Universität Wien und Medizinische Universität Wien; Österreich
- Institut für Krebsforschung; Medizinische Universität Wien; Österreich
| | - Walter Berger
- Forschungsplattform “Translational Cancer Therapy Research”; Universität Wien und Medizinische Universität Wien; Österreich
- Institut für Krebsforschung; Medizinische Universität Wien; Österreich
| | | | - Bernhard K. Keppler
- Forschungsplattform “Translational Cancer Therapy Research”; Universität Wien und Medizinische Universität Wien; Österreich
- Institut für Anorganische Chemie; Universität Wien; Österreich
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology MFPL; Universität Wien; Österreich
| | - Christopher Gerner
- Institut für Analytische Chemie; Universität Wien; Währinger Straße 38 1090 Wien Österreich
| |
Collapse
|