Luqman A, Blair VL, Brammananth R, Crellin PK, Coppel RL, Andrews PC. Homo- and heteroleptic bismuth(III/V) thiolates from N-heterocyclic thiones: synthesis, structure and anti-microbial activity.
Chemistry 2014;
20:14362-77. [PMID:
25224757 DOI:
10.1002/chem.201404109]
[Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Indexed: 12/28/2022]
Abstract
Homo- and heteroleptic bismuth thiolato complexes have been synthesised and characterised from biologically relevant tetrazole-, imidazole-, thiadiazole- and thiazole-based heterocyclic thiones (thiols): 1-methyl-1H-tetrazole-5-thiol (1-MMTZ(H)); 4-methyl-4H-1,2,4-triazole-3-thiol (4-MTT(H)); 1-methyl-1H-imidazole-2-thiol (2-MMI(H)); 5-methyl-1,3,4-thiadiazole-2-thiol (5-MMTD(H)); 1,3,4-thiadiazole-2-dithiol (2,5-DMTD(H)2 ); and 4-(4-bromophenyl)thiazole-2-thiol (4-BrMTD(H)). Reaction of BiPh3 with 1-MMTZ(H) produced the rare Bi(V) thiolato complex [BiPh(1-MMTZ)4 ], which undergoes reduction in DMSO to give [BiPh(1-MMTZ)2 {(1-MMTZ(H)}2 ]. Reactions with PhBiCl2 or BiPh3 generally produced monophenylbismuth thiolates, [BiPh(SR)2 ]. The crystal structures of [BiPh(1-MMTZ)2 {1-MMTZ(H)}2 ], [BiPh(5-MMTD)2 ], [BiPh{2,5-DMTD(H)}2 (Me2 CO)] and [Bi(4-BrMTD)3 ] were obtained. Evaluation of the bactericidal properties against M. smegmatis, S. aureus, MRSA, VRE, E. faecalis and E. coli showed complexes containing the anionic ligands 1- MMTZ, 4-MTT and 4-BrMTD to be most effective. The dithiolato dithione complexes [BiPh(4-MTT)2 {4-MTT(H)}2 ] and [BiPh(1-MMTZ)2 {1-MMTZ(H)}2 ] were most effective against all the bacteria: MICs 0.34 μM for [BiPh(4-MTT)2 {4-MTT(H)}2 ] against VRE, and 1.33 μM for [BiPh(1-MMTZ)2 {1-MMTZ(H)}2 ] against M. smegmatis and S. aureus. Tris-thiolato Bi(III) complexes were least effective overall. All complexes showed little or no toxicity towards mammalian COS-7 cells at 20 μg mL(-1) .
Collapse