1
|
Burchill L, Males A, Kaur A, Davies GJ, Williams SJ. Structure, Function and Mechanism of N‐Glycan Processing Enzymes:
endo
‐α‐1,2‐Mannanase and
endo
‐α‐1,2‐Mannosidase. Isr J Chem 2022. [DOI: 10.1002/ijch.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne Parkville Victoria Australia 3010
| | - Alexandra Males
- Department of Chemistry University of York York YO10 5DD United Kingdom
| | - Arashdeep Kaur
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne Parkville Victoria Australia 3010
| | - Gideon J. Davies
- Department of Chemistry University of York York YO10 5DD United Kingdom
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne Parkville Victoria Australia 3010
| |
Collapse
|
2
|
Shirakawa A, Manabe Y, Marchetti R, Yano K, Masui S, Silipo A, Molinaro A, Fukase K. Chemical Synthesis of Sialyl
N
‐Glycans and Analysis of Their Recognition by Neuraminidase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Roberta Marchetti
- Department of Chemical Science University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Kumpei Yano
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Seiji Masui
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Alba Silipo
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Department of Chemical Science University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Antonio Molinaro
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Department of Chemical Science University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
3
|
Shirakawa A, Manabe Y, Marchetti R, Yano K, Masui S, Silipo A, Molinaro A, Fukase K. Chemical Synthesis of Sialyl N-Glycans and Analysis of Their Recognition by Neuraminidase. Angew Chem Int Ed Engl 2021; 60:24686-24693. [PMID: 34520098 DOI: 10.1002/anie.202111035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/07/2022]
Abstract
The chemical synthesis of a fully sialylated tetraantennary N-glycan has been achieved for the first time by using the diacetyl strategy, in which NHAc is protected as NAc2 to improve reactivity by preventing intermolecular hydrogen bonds. Another key was the glycosylation to the branched mannose in an ether solvent, which promoted the desired glycosylation by stabilizing the oxocarbenium ion intermediate. Furthermore, high α-selectivity of these glycosylation reactions was realized by utilizing remote participation. Two asymmetrically deuterium labeled sialyl N-glycans were also synthesized by the same strategy. The synthesized N-glycans were used to probe the molecular basis of H1N1 neuraminidase recognition. The asymmetrically deuterated N-glycans revealed a difference in the recognition of sialic acid on each branch. Meanwhile, the tetraantennary N-glycan was used to evaluate the effects of multivalency and steric hinderance by forming branching structures.
Collapse
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Roberta Marchetti
- Department of Chemical Science, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Kumpei Yano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Seiji Masui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Alba Silipo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemical Science, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemical Science, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
4
|
Liu M, Qin X, Ye XS. Glycan Assembly Strategy: From Concept to Application. CHEM REC 2021; 21:3256-3277. [PMID: 34498347 DOI: 10.1002/tcr.202100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Glycans have been hot topics in recent years due to their exhibition of numerous biological activities. However, the heterogeneity of their natural source and the complexity of their chemical synthesis impede the progress in their biological research. Thus, the development of glycan assembly strategies to acquire plenty of structurally well-defined glycans is an important issue in carbohydrate chemistry. In this review, the latest advances in glycan assembly strategies from concepts to their applications in carbohydrate synthesis, including chemical and enzymatic/chemo-enzymatic approaches, as well as solution-phase and solid-phase/tag-assisted synthesis, are summarized. Furthermore, the automated glycan assembly techniques are also outlined.
Collapse
Affiliation(s)
- Mingli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xianjin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
5
|
Ito Y, Kajihara Y, Takeda Y. Chemical‐Synthesis‐Based Approach to Glycoprotein Functions in the Endoplasmic Reticulum. Chemistry 2020; 26:15461-15470. [DOI: 10.1002/chem.202004158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yukishige Ito
- Project Research Center for Fundamental Sciences Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
- RIKEN Cluster for Pioneering Research Wako Saitama 3510198 Japan
| | - Yasuhiro Kajihara
- Project Research Center for Fundamental Sciences Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 5600043 Japan
| | - Yoichi Takeda
- Department of Biotechnology Ritsumeikan University Kusatsu Shiga 5258577 Japan
| |
Collapse
|
6
|
Zhang X, Liu H, Lin L, Yao W, Zhao J, Wu M, Li Z. Synthesis of Fucosylated Chondroitin Sulfate Nonasaccharide as a Novel Anticoagulant Targeting Intrinsic Factor Xase Complex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Huiying Liu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Wang Yao
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| |
Collapse
|
7
|
Zhang X, Liu H, Lin L, Yao W, Zhao J, Wu M, Li Z. Synthesis of Fucosylated Chondroitin Sulfate Nonasaccharide as a Novel Anticoagulant Targeting Intrinsic Factor Xase Complex. Angew Chem Int Ed Engl 2018; 57:12880-12885. [PMID: 30067300 DOI: 10.1002/anie.201807546] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Huiying Liu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Wang Yao
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Jinhua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Mingyi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201 China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Chemical Biology; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| |
Collapse
|
8
|
Manabe Y, Shomura H, Minamoto N, Nagasaki M, Takakura Y, Tanaka K, Silipo A, Molinaro A, Fukase K. Convergent Synthesis of a Bisecting N-Acetylglucosamine (GlcNAc)-Containing N-Glycan. Chem Asian J 2018; 13:1544-1551. [PMID: 29665315 DOI: 10.1002/asia.201800367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/13/2018] [Indexed: 01/26/2023]
Abstract
The chemical synthesis of a bisecting N-acetylglucosamine (GlcNAc)-containing N-glycan was achieved by a convergent synthetic route through [4+2] and [6+2] glycosylations. This synthetic route reduced the number of reaction steps, although the key glycosylations were challenging in terms of yields and selectivities owing to steric hindrance at the glycosylation site and a lack of neighboring group participation. The yields of these glycosylations were enhanced by stabilizing the oxocarbenium ion intermediate through ether coordination. Glycosyl donor protecting groups were explored in an effort to realize perfect α selectivity by manipulating remote participation. The simultaneous glycosylations of a tetrasaccharide with two disaccharides was investigated to efficiently construct a bisecting GlcNAc-containing N-glycan.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroki Shomura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Naoya Minamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Masahiro Nagasaki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yohei Takakura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Alba Silipo
- Department of Chemical Science, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemical Science, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
9
|
Wang N, Li ST, Lu TT, Nakanishi H, Gao XD. Approaches towards the core pentasaccharide in N- linked glycans. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Iwamoto S, Kasahara Y, Yoshimura Y, Seko A, Takeda Y, Ito Y, Totani K, Matsuo I. Endo-α-Mannosidase-Catalyzed Transglycosylation. Chembiochem 2017; 18:1376-1378. [PMID: 28444927 DOI: 10.1002/cbic.201700111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 02/04/2023]
Abstract
In order for facilitating the synthesis of oligosaccharides, transglycosylation reactions mediated by glycoside hydrolases have been studied in various contexts. In this study, we examined the transglycosylating activity of a Golgi endo-α-mannosidase. We prepared various glycosyl donors and acceptors, and recombinant human Golgi endo-α-mannosidase and its various mutants were expressed. The enzyme was able to mediate transglycosylation from α-glycosyl-fluorides. Systematic screening of various point mutants revealed that the E407D mutant had excellent transglycosylation activity and extremely low hydrolytic activity. Substrate specificity analysis revealed that minimum motif required for glycosyl acceptor is Manα1- 2Man. The synthetic utility of the enzyme was demonstrated by generation of a high-mannose-type undecasaccharide (Glc1 Man9 GlcNAc2 ).
Collapse
Affiliation(s)
- Shogo Iwamoto
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Yuta Kasahara
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Yayoi Yoshimura
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Akira Seko
- ERATO Science and Technology Agency, JST), Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoichi Takeda
- Department of Biotechnology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yukishige Ito
- ERATO Science and Technology Agency, JST), Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kiichiro Totani
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino, Tokyo, 180-8633, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
11
|
Xolin A, Norsikian S, Boyer FD, Beau JM. Iron(III)-Triflate-Catalyzed Multiple Glycosylations with Peracetylated β-d-Glucosamine. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amandine Xolin
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Stéphanie Norsikian
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
- Institut Jean-Pierre Bourgin; INRA; AgroParisTech; CNRS; Université Paris-Saclay; RD10 78026 Versailles France
| | - Jean-Marie Beau
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud; Université Paris-Saclay; 91405 Orsay France
| |
Collapse
|
12
|
Fujikawa K, Seko A, Takeda Y, Ito Y. Approaches toward High-Mannose-Type Glycan Libraries. CHEM REC 2015; 16:35-46. [DOI: 10.1002/tcr.201500222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/27/2023]
Affiliation(s)
- Kohki Fujikawa
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- SUNTORY Bioorganic Research Institute; 8-1-1 Seikadai Seika-cho Soraku-gun Kyoto 619-0284 Japan
| | - Akira Seko
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yoichi Takeda
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Biotechnology, College of Life Sciences; Ritsumeikan University; 1-1-1 Noji-higashi Kusatsu Shiga 525-8577 Japan
| | - Yukishige Ito
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Synthetic Cellular Chemistry Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
13
|
Fujikawa K, Koizumi A, Hachisu M, Seko A, Takeda Y, Ito Y. Construction of a High‐Mannose‐Type Glycan Library by a Renewed Top‐Down Chemo‐Enzymatic Approach. Chemistry 2015; 21:3224-33. [DOI: 10.1002/chem.201405781] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Kohki Fujikawa
- ERATO Science and Technology Agency (JST), Ito Glycotrilogy Project, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan), Fax: (+81) 48‐462‐4680
| | - Akihiko Koizumi
- ERATO Science and Technology Agency (JST), Ito Glycotrilogy Project, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan), Fax: (+81) 48‐462‐4680
| | - Masakazu Hachisu
- ERATO Science and Technology Agency (JST), Ito Glycotrilogy Project, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan), Fax: (+81) 48‐462‐4680
| | - Akira Seko
- ERATO Science and Technology Agency (JST), Ito Glycotrilogy Project, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan), Fax: (+81) 48‐462‐4680
| | - Yoichi Takeda
- ERATO Science and Technology Agency (JST), Ito Glycotrilogy Project, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan), Fax: (+81) 48‐462‐4680
| | - Yukishige Ito
- ERATO Science and Technology Agency (JST), Ito Glycotrilogy Project, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan), Fax: (+81) 48‐462‐4680
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2‐1 Hirosawa, Wako, Saitama 351‐0198 (Japan)
| |
Collapse
|