1
|
Na TU, Sander V, Davidson AJ, Lin R, Hermant YO, Hardie Boys MT, Pletzer D, Campbell G, Ferguson SA, Cook GM, Allison JR, Brimble MA, Northrop BH, Cameron AJ. Allenamides as a Powerful Tool to Incorporate Diversity: Thia-Michael Lipidation of Semisynthetic Peptides and Access to β-Keto Amides. Angew Chem Int Ed Engl 2024; 63:e202407764. [PMID: 38932510 DOI: 10.1002/anie.202407764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties. Utilising an allenamide, we report the first semisynthesis of antimicrobial lipopeptides leveraging a highly efficient thia-Michael addition of chemically diverse lipophilic thiols. Using chemoenzymatically prepared polymyxin B nonapeptide (PMBN) as a model scaffold, an optimised allenamide-mediated thia-Michael addition effected rapid and near quantitative lipidation, affording vinyl sulfide-linked lipopeptide derivatives. Harnessing the utility of this new methodology, 22 lipophilic thiols of unprecedented chemical diversity were introduced to the PMBN framework. These included alkyl thiols, substituted aromatic thiols, heterocyclic thiols and those bearing additional functional groups (e.g., amines), ultimately yielding analogues with potent Gram-negative antimicrobial activity and substantially attenuated nephrotoxicity. Furthermore, we report facile routes to transform the allenamide into a β-keto amide on unprotected peptides, offering a powerful "jack-of-all-trades" synthetic intermediate to enable further peptide modification.
Collapse
Affiliation(s)
- Tae-Ung Na
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Veronika Sander
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Alan J Davidson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Rolland Lin
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Madeleine T Hardie Boys
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Daniel Pletzer
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Georgia Campbell
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Scott A Ferguson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Jane R Allison
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Brian H Northrop
- Department of Chemistry, Wesleyan University, 52 Lawn Ave., Middletown, CT 06459, U.S.A
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
2
|
Brunderová M, Krömer M, Vlková M, Hocek M. Chloroacetamide-Modified Nucleotide and RNA for Bioconjugations and Cross-Linking with RNA-Binding Proteins. Angew Chem Int Ed Engl 2023; 62:e202213764. [PMID: 36533569 PMCID: PMC10107093 DOI: 10.1002/anie.202213764] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Marta Vlková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| |
Collapse
|
3
|
Leone D, Pohl R, Hubálek M, Kadeřábková M, Krömer M, Sýkorová V, Hocek M. Glyoxal‐Linked Nucleotides and DNA for Bioconjugations and Crosslinking with Arginine‐Containing Peptides and Proteins. Chemistry 2022; 28:e202104208. [DOI: 10.1002/chem.202104208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Denise‐Liu' Leone
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Marta Kadeřábková
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| |
Collapse
|
4
|
Konč J, Brown L, Whiten DR, Zuo Y, Ravn P, Klenerman D, Bernardes GJL. A Platform for Site‐Specific DNA‐Antibody Bioconjugation by Using Benzoylacrylic‐Labelled Oligonucleotides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juraj Konč
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Libby Brown
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Daniel R. Whiten
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Yukun Zuo
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Peter Ravn
- AstraZeneca R&D BioPharmaceuticals Unit
- Antibody Discovery & Protein Engineering (ADPE) Milstein Building, Granta Park Cambridge CB21 6GH UK
- Current address: Department of Biotherapeutic Discovery H. Lundbeck A/S Ottiliavej 9, 2500 Valby Denmark
| | - David Klenerman
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- UK Dementia Research Institute University of Cambridge Cambridge CB2 0XY UK
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Instituto de Medicina Molecular João Lobo Antunes Faculdade de Medicina Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
5
|
Konč J, Brown L, Whiten DR, Zuo Y, Ravn P, Klenerman D, Bernardes GJL. A Platform for Site-Specific DNA-Antibody Bioconjugation by Using Benzoylacrylic-Labelled Oligonucleotides. Angew Chem Int Ed Engl 2021; 60:25905-25913. [PMID: 34555238 PMCID: PMC9297960 DOI: 10.1002/anie.202109713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Many bioconjugation strategies for DNA oligonucleotides and antibodies suffer limitations, such as site-specificity, stoichiometry and hydrolytic instability of the conjugates, which makes them unsuitable for biological applications. Here, we report a new platform for the preparation of DNA-antibody bioconjugates with a simple benzoylacrylic acid pentafluorophenyl ester reagent. Benzoylacrylic-labelled oligonucleotides prepared with this reagent can be site-specifically conjugated to a range of proteins and antibodies through accessible cysteine residues. The homogeneity of the prepared DNA-antibody bioconjugates was confirmed by a new LC-MS protocol and the bioconjugate probes were used in fluorescence or super-resolution microscopy cell imaging experiments. This work demonstrates the versatility and robustness of our bioconjugation protocol that gives site-specific, well-defined and plasma-stable DNA-antibody bioconjugates for biological applications.
Collapse
Affiliation(s)
- Juraj Konč
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Libby Brown
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Daniel R. Whiten
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Yukun Zuo
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Peter Ravn
- AstraZenecaR&D BioPharmaceuticals Unit|Antibody Discovery & Protein Engineering (ADPE)Milstein Building, Granta ParkCambridgeCB21 6GHUK
- Current address: Department of Biotherapeutic DiscoveryH. Lundbeck A/SOttiliavej 9, 2500ValbyDenmark
| | - David Klenerman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0XYUK
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| |
Collapse
|
6
|
Leone D, Hubálek M, Pohl R, Sýkorová V, Hocek M. 1,3-Diketone-Modified Nucleotides and DNA for Cross-Linking with Arginine-Containing Peptides and Proteins. Angew Chem Int Ed Engl 2021; 60:17383-17387. [PMID: 34107150 PMCID: PMC8362068 DOI: 10.1002/anie.202105126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Indexed: 12/28/2022]
Abstract
Linear or branched 1,3-diketone-linked thymidine 5'-O-mono- and triphosphate were synthesized through CuAAC click reaction of diketone-alkynes with 5-azidomethyl-dUMP or -dUTP. The triphosphates were good substrates for KOD XL DNA polymerase in primer extension synthesis of modified DNA. The nucleotide bearing linear 3,5-dioxohexyl group (HDO) efficiently reacted with arginine-containing peptides to form stable pyrimidine-linked conjugates, whereas the branched 2-acetyl-3-oxo-butyl (PDO) group was not reactive. Reaction with Lys or a terminal amino group formed enamine adducts that were prone to hydrolysis. This reactive HDO modification in DNA was used for bioconjugations and cross-linking with Arg-containing peptides or proteins (e.g. histones).
Collapse
Affiliation(s)
- Denise‐Liu' Leone
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
7
|
Tivon Y, Falcone G, Deiters A. Protein Labeling and Crosslinking by Covalent Aptamers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yaniv Tivon
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Gianna Falcone
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
8
|
Tivon Y, Falcone G, Deiters A. Protein Labeling and Crosslinking by Covalent Aptamers. Angew Chem Int Ed Engl 2021; 60:15899-15904. [PMID: 33928724 PMCID: PMC8260448 DOI: 10.1002/anie.202101174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/09/2021] [Indexed: 12/11/2022]
Abstract
We developed a new approach to selectively modify native proteins in their biological environment using electrophilic covalent aptamers. These aptamers are generated through introduction of a proximity-driven electrophile at specific nucleotide sites. Using thrombin as a proof-of-concept, we demonstrate that covalent aptamers can selectively transfer a variety of functional handles and/or irreversibly crosslink to the target protein. This approach offers broad programmability and high target specificity. Furthermore, it addresses issues common to aptamers such as instability towards endogenous nucleases and residence times during target engagement. Covalent aptamers are new tools that enable specific protein modification and sensitive protein detection. Moreover, they provide prolonged, nuclease-resistant enzyme inhibition.
Collapse
Affiliation(s)
- Yaniv Tivon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Gianna Falcone
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
9
|
Leone D, Hubálek M, Pohl R, Sýkorová V, Hocek M. 1,3‐Diketone‐Modified Nucleotides and DNA for Cross‐Linking with Arginine‐Containing Peptides and Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Denise‐Liu' Leone
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| |
Collapse
|
10
|
Ivancová I, Pohl R, Hubálek M, Hocek M. Squaramate-Modified Nucleotides and DNA for Specific Cross-Linking with Lysine-Containing Peptides and Proteins. Angew Chem Int Ed Engl 2019; 58:13345-13348. [PMID: 31328344 PMCID: PMC6771961 DOI: 10.1002/anie.201906737] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/12/2019] [Indexed: 01/31/2023]
Abstract
Squaramate-linked 2'-deoxycytidine 5'-O-triphosphate was synthesized and found to be good substrate for KOD XL DNA polymerase in primer extension or PCR synthesis of modified DNA. The resulting squaramate-linked DNA reacts with primary amines to form a stable diamide linkage. This reaction was used for bioconjugations of DNA with Cy5 and Lys-containing peptides. Squaramate-linked DNA formed covalent cross-links with histone proteins. This reactive nucleotide has potential for other bioconjugations of nucleic acids with amines, peptides or proteins without need of any external reagent.
Collapse
Affiliation(s)
- Ivana Ivancová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 8CZ-12843Prague 2Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 8CZ-12843Prague 2Czech Republic
| |
Collapse
|
11
|
Ivancová I, Pohl R, Hubálek M, Hocek M. Squaramate‐Modified Nucleotides and DNA for Specific Cross‐Linking with Lysine‐Containing Peptides and Proteins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ivana Ivancová
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in Prague Hlavova 8 CZ-12843 Prague 2 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in Prague Hlavova 8 CZ-12843 Prague 2 Czech Republic
| |
Collapse
|
12
|
Matyašovský J, Pohl R, Hocek M. 2-Allyl- and Propargylamino-dATPs for Site-Specific Enzymatic Introduction of a Single Modification in the Minor Groove of DNA. Chemistry 2018; 24:14938-14941. [PMID: 30074286 PMCID: PMC6221035 DOI: 10.1002/chem.201803973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 12/15/2022]
Abstract
A series of 2-alkylamino-2'-deoxyadenosine triphosphates (dATP) was prepared and found to be substrates for the Therminator DNA polymerase, which incorporated only one modified nucleotide into the primer. Using a template encoding for two consecutive adenines, conditions were found for incorporation of either one or two modified nucleotides. In all cases, addition of a mixture of natural dNTPs led to primer extension resulting in site-specific single modification of DNA in the minor groove. The allylamino-substituted DNA was used for the thiol-ene addition, whereas the propargylamino-DNA for the CuAAC click reaction was used to label the DNA with a fluorescent dye in the minor groove. The approach was used to construct FRET probes for detection of oligonucleotides.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
13
|
Kasai Y, Sato K, Utsumi S, Ichikawa S. Improvement of S N Ar Reaction Rate by an Electron-Withdrawing Group in the Crosslinking of DNA Cytosine-5 Methyltransferase by a Covalent Oligodeoxyribonucleotide Inhibitor. Chembiochem 2018; 19:1866-1872. [PMID: 29900657 DOI: 10.1002/cbic.201800244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 12/31/2022]
Abstract
DNA cytosine 5-methyltransferase (DNMT) catalyzes methylation at the C5 position of the cytosine residues in the CpG sequence. Aberrant DNA methylation patterns are found in cancer cells. Therefore, inhibition of human DNMT is an effective strategy for treating various cancers. The inhibitors of DNMT have an electron-deficient nucleobase because this group facilitates attack by the catalytic Cys residue in DNMTs. Recently, we reported the synthesis and properties of mechanism-based modified nucleosides, 2-amino-4-halopyridine-C-nucleosides (dX P), as inhibitors of DNMT. To develop a more efficient inhibitor of DNMT for oligonucleotide therapeutics, oligodeoxyribonucleotides (ODNs) containing other nucleoside analogues, which react more quickly with DNMT, are needed. Herein, we describe the design, synthesis, and evaluation of the properties of 2-amino-3-cyano-4-halopyridine-C-nucleosides (dX PCN ) and ODNs containing dX PCN , as more reactive inhibitors of DNMTs. Nucleophilic aromatic substitution (SN Ar) of the designed nucleosides, dX PCN , was faster than that of dX P, and the ODN containing dX PCN effectively formed a complex with DNMTs. This study suggests that the incorporation of an electron-withdrawing group would be an effective method to increase reactivity toward the nucleophile of the DNMTs, while maintaining high specificity.
Collapse
Affiliation(s)
- Yukiko Kasai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Kousuke Sato
- Faculty of Pharmaceutical Sciences, Health Sciences, University of Hokkaido, 1757 Kanazawa, Tobetsu, Ishikari-gun, 061-0293, Japan
| | - Shohei Utsumi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.,Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
14
|
Krömer M, Bártová K, Raindlová V, Hocek M. Synthesis of Dihydroxyalkynyl and Dihydroxyalkyl Nucleotides as Building Blocks or Precursors for Introduction of Diol or Aldehyde Groups to DNA for Bioconjugations. Chemistry 2018; 24:11890-11894. [PMID: 29790604 DOI: 10.1002/chem.201802282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 01/18/2023]
Abstract
(3,4-Dihydroxybut-1-ynyl)uracil, -cytosine and -7-deazaadenine 2'-deoxyribonucleoside triphosphates (dNTPs) were prepared by direct aqueous Sonogashira cross-coupling of halogenated dNTPs with dihydroxybut-1-yne and converted to 3,4-dihydroxybutyl dNTPs through catalytic hydrogenation. Sodium periodate oxidative cleavage of dihydroxybutyl-dUTP gave the desired aliphatic aldehyde-linked dUTP, whereas the oxidative cleavage of the corresponding deazaadenine dNTP gave a cyclic aminal. All dihydroxyalkyl or -alkynyl dNTPs and the formylethyl-dUTP were good substrates for DNA polymerases and were used for synthesis of diol- or aldehyde-linked DNA. The aldehyde linked DNA was used for the labelling or bioconjugations through hydrazone formation or reductive aminations.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
15
|
N
-Phenyl-N
-aceto-vinylsulfonamides as Efficient and Chemoselective Handles for N-Terminal Modification of Peptides and Proteins. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Naik A, Alzeer J, Triemer T, Bujalska A, Luedtke NW. Chemoselective Modification of Vinyl DNA by Triazolinediones. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anu Naik
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Jawad Alzeer
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Therese Triemer
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Anna Bujalska
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
17
|
Naik A, Alzeer J, Triemer T, Bujalska A, Luedtke NW. Chemoselective Modification of Vinyl DNA by Triazolinediones. Angew Chem Int Ed Engl 2017; 56:10850-10853. [PMID: 28561928 DOI: 10.1002/anie.201702554] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/09/2017] [Indexed: 11/10/2022]
Abstract
A new method for the post-synthetic modification of nucleic acids was developed that involves mixing a phenyl triazolinedione (PTAD) derivative with DNA containing a vinyl nucleobase. The resulting reactions proceeded through step-wise mechanisms, giving either a formal [4+2] cycloaddition product, or, depending on the context of nucleobase, PTAD addition along with solvent trapping to give a secondary alcohol in water. Catalyst-free addition between PTAD and the terminal alkene of 5-vinyl-2'-deoxyuridine (VdU) was exceptionally fast, with a second-order rate constant of 2×103 m-1 s-1 . PTAD derivatives selectively reacted with VdU-containing oligonucleotides in a conformation-selective manner, with higher yields observed for G-quadruplex versus duplex DNA. These results demonstrate a new strategy for copper-free bioconjugation of DNA that can potentially be used to probe nucleic acid conformations in cells.
Collapse
Affiliation(s)
- Anu Naik
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jawad Alzeer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Therese Triemer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anna Bujalska
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nathan W Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
18
|
Matyašovský J, Perlíková P, Malnuit V, Pohl R, Hocek M. 2-Substituted dATP Derivatives as Building Blocks for Polymerase-Catalyzed Synthesis of DNA Modified in the Minor Groove. Angew Chem Int Ed Engl 2016; 55:15856-15859. [PMID: 27879047 PMCID: PMC6680173 DOI: 10.1002/anie.201609007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Indexed: 12/11/2022]
Abstract
2'-Deoxyadenosine triphosphate (dATP) derivatives bearing diverse substituents (Cl, NH2 , CH3 , vinyl, ethynyl, and phenyl) at position 2 were prepared and tested as substrates for DNA polymerases. The 2-phenyl-dATP was not a substrate for DNA polymerases, but the dATPs bearing smaller substituents were good substrates in primer-extension experiments, producing DNA substituted in the minor groove. The vinyl-modified DNA was applied in thiol-ene addition and the ethynyl-modified DNA was applied in a CuAAC click reaction to form DNA labelled with fluorescent dyes in the minor groove.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Vincent Malnuit
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
19
|
Matyašovský J, Perlíková P, Malnuit V, Pohl R, Hocek M. 2-Substituted dATP Derivatives as Building Blocks for Polymerase-Catalyzed Synthesis of DNA Modified in the Minor Groove. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Vincent Malnuit
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science; Charles University in Prague; Hlavova 8 12843 Prague 2 Czech Republic
| |
Collapse
|
20
|
Fonvielle M, Sakkas N, Iannazzo L, Le Fournis C, Patin D, Mengin-Lecreulx D, El-Sagheer A, Braud E, Cardon S, Brown T, Arthur M, Etheve-Quelquejeu M. Electrophilic RNA for Peptidyl-RNA Synthesis and Site-Specific Cross-Linking with tRNA-Binding Enzymes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthieu Fonvielle
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Nicolas Sakkas
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Chloé Le Fournis
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Afaf El-Sagheer
- Department of Chemistry; University of Oxford, Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
- Chemistry Branch, Dept. of Science and Mathematics, Faculty of Petroleum and Mining Engineering; Suez Canal University; Suez 43721 Egypt
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| | - Sébastien Cardon
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Tom Brown
- Department of Chemistry; University of Oxford, Chemistry Research Laboratory; 12 Mansfield Road Oxford OX1 3TA UK
| | - Michel Arthur
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM; Université Pierre et Marie Curie-Paris 6, Université Paris Descartes; 15 rue de L'Ecole de Médecine Paris F-75006 France
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris F-75006 France
- CNRS UMR 8601; Paris F-75006 France
| |
Collapse
|
21
|
Fonvielle M, Sakkas N, Iannazzo L, Le Fournis C, Patin D, Mengin-Lecreulx D, El-Sagheer A, Braud E, Cardon S, Brown T, Arthur M, Etheve-Quelquejeu M. Electrophilic RNA for Peptidyl-RNA Synthesis and Site-Specific Cross-Linking with tRNA-Binding Enzymes. Angew Chem Int Ed Engl 2016; 55:13553-13557. [PMID: 27667506 DOI: 10.1002/anie.201606843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/03/2016] [Indexed: 12/12/2022]
Abstract
RNA functionalization is challenging due to the instability of RNA and the limited range of available enzymatic reactions. We developed a strategy based on solid phase synthesis and post-functionalization to introduce an electrophilic site at the 3' end of tRNA analogues. The squarate diester used as an electrophile enabled sequential amidation and provided asymmetric squaramides with high selectivity. The squaramate-RNAs specifically reacted with the lysine of UDP-MurNAc-pentapeptide, a peptidoglycan precursor used by the aminoacyl-transferase FemXWv for synthesis of the bacterial cell wall. The peptidyl-RNA obtained with squaramate-RNA and unprotected UDP-MurNAc-pentapeptide efficiently inhibited FemXWv . The squaramate unit also promoted specific cross-linking of RNA to the catalytic Lys of FemXWv but not to related transferases recognizing different aminoacyl-tRNAs. Thus, squaramate-RNAs provide specificity for cross-linking with defined groups in complex biomolecules due to its unique reactivity.
Collapse
Affiliation(s)
- Matthieu Fonvielle
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Nicolas Sakkas
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Chloé Le Fournis
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Afaf El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.,Chemistry Branch, Dept. of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez, 43721, Egypt
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France.,CNRS UMR 8601, Paris, F-75006, France
| | - Sébastien Cardon
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Michel Arthur
- Laboratoire de Recherche Moléculaire sur les Antibiotiques Centre de Recherche des Cordeliers, Equipe 12, UMR S 1138; INSERM, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 15 rue de L'Ecole de Médecine, Paris, F-75006, France.
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75006, France. .,CNRS UMR 8601, Paris, F-75006, France.
| |
Collapse
|
22
|
Welter M, Verga D, Marx A. Sequence-Specific Incorporation of Enzyme-Nucleotide Chimera by DNA Polymerases. Angew Chem Int Ed Engl 2016; 55:10131-5. [PMID: 27392211 DOI: 10.1002/anie.201604641] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 02/06/2023]
Abstract
DNA polymerases select the right nucleotide for the growing polynucleotide chain based on the shape and geometry of the nascent nucleotide pairs and thereby ensure high DNA replication selectivity. High-fidelity DNA polymerases are believed to possess tight active sites that allow little deviation from the canonical structures. However, DNA polymerases are known to use nucleotides with small modifications as substrates, which is key for numerous core biotechnology applications. We show that even high-fidelity DNA polymerases are capable of efficiently using nucleotide chimera modified with a large protein like horseradish peroxidase as substrates for template-dependent DNA synthesis, despite this "cargo" being more than 100-fold larger than the natural substrates. We exploited this capability for the development of systems that enable naked-eye detection of DNA and RNA at single nucleotide resolution.
Collapse
Affiliation(s)
- Moritz Welter
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Daniela Verga
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.
| |
Collapse
|
23
|
Welter M, Verga D, Marx A. Sequenz-spezifischer Einbau von Enzym-Nukleotid-Chimären durch DNA-Polymerasen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Moritz Welter
- Fachbereich Chemie, Graduiertenschule Chemische Biologie Konstanz; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Daniela Verga
- Fachbereich Chemie, Graduiertenschule Chemische Biologie Konstanz; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Marx
- Fachbereich Chemie, Graduiertenschule Chemische Biologie Konstanz; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
24
|
Gunnoo SB, Madder A. Chemical Protein Modification through Cysteine. Chembiochem 2016; 17:529-53. [DOI: 10.1002/cbic.201500667] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Smita B. Gunnoo
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| | - Annemieke Madder
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| |
Collapse
|
25
|
Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy. Angew Chem Int Ed Engl 2015; 55:174-8. [PMID: 26768820 DOI: 10.1002/anie.201507922] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Indexed: 12/16/2022]
Abstract
Fluorescent probes for detecting the physical properties of cellular structures have become valuable tools in life sciences. The fluorescence lifetime of molecular rotors can be used to report on variations in local molecular packing or viscosity. We used a nucleoside linked to a meso-substituted BODIPY fluorescent molecular rotor (dC(bdp)) to sense changes in DNA microenvironment both in vitro and in living cells. DNA incorporating dC(bdp) can respond to interactions with DNA-binding proteins and lipids by changes in the fluorescence lifetimes in the range 0.5-2.2 ns. We can directly visualize changes in the local environment of exogenous DNA during transfection of living cells. Relatively long fluorescence lifetimes and extensive contrast for detecting changes in the microenvironment together with good photostability and versatility for DNA synthesis make this probe suitable for analysis of DNA-associated processes, cellular structures, and also DNA-based nanomaterials.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic) http://www.hof-fluorescence-group.weebly.com/
| | - Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic) http://www.hof-fluorescence-group.weebly.com/
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejskova 3, 18223 Prague 8 (Czech Republic) http://www.hof-fluorescence-group.weebly.com/.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic).
| |
Collapse
|
26
|
Dziuba D, Jurkiewicz P, Cebecauer M, Hof M, Hocek M. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507922] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Mačková M, Boháčová S, Perlíková P, Poštová Slavětínská L, Hocek M. Polymerase Synthesis and Restriction Enzyme Cleavage of DNA Containing 7-Substituted 7-Deazaguanine Nucleobases. Chembiochem 2015; 16:2225-36. [PMID: 26382079 DOI: 10.1002/cbic.201500315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 01/06/2023]
Abstract
Previous studies of polymerase synthesis of base-modified DNAs and their cleavage by restriction enzymes have mostly related only to 5-substituted pyrimidine and 7-substituted 7-deazaadenine nucleotides. Here we report the synthesis of a series of 7-substituted 7-deazaguanine 2'-deoxyribonucleoside 5'-O-triphosphates (dG(R) TPs), their use as substrates for polymerase synthesis of modified DNA and the influence of the modification on their cleavage by type II restriction endonucleases (REs). The dG(R) TPs were generally good substrates for polymerases but the PCR products could not be visualised on agarose gels by intercalator staining, due to fluorescence quenching. The presence of 7-substituted 7-deazaguanine residues in recognition sequences of REs in most cases completely blocked the cleavage.
Collapse
Affiliation(s)
- Michaela Mačková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610, Prague 6, Czech Republic. .,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic.
| |
Collapse
|
28
|
Dadová J, Vrábel M, Adámik M, Brázdová M, Pohl R, Fojta M, Hocek M. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA–Protein Cross‐Linking. Chemistry 2015; 21:16091-102. [DOI: 10.1002/chem.201502209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Jitka Dadová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Milan Vrábel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Matej Adámik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Marie Brázdová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno (Czech Republic)
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic)
| |
Collapse
|
29
|
Merkel M, Peewasan K, Arndt S, Ploschik D, Wagenknecht HA. Copper-Free Postsynthetic Labeling of Nucleic Acids by Means of Bioorthogonal Reactions. Chembiochem 2015; 16:1541-53. [DOI: 10.1002/cbic.201500199] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/25/2022]
|
30
|
|
31
|
Arndt S, Wagenknecht HA. "Photoclick" postsynthetic modification of DNA. Angew Chem Int Ed Engl 2014; 53:14580-2. [PMID: 25359534 DOI: 10.1002/anie.201407874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/12/2014] [Indexed: 12/31/2022]
Abstract
A new DNA building block bearing a push-pull-substituted diaryltetrazole linked to the 5-position of 2'-deoxyuridine through an aminopropynyl group was synthesized. The accordingly modified oligonucleotide allows postsynthetic labeling with a maleimide-modified sulfo-Cy3 dye, N-methylmaleimide, and methylmethacrylate as dipolarophiles by irradiation at 365 nm (LED). The determined rate constant of (23±7) M(-1) s(-1) is remarkably high with respect to other copper-free bioorthogonal reactions and comparable with the copper-catalyzed cycloaddition between azides and acetylenes.
Collapse
Affiliation(s)
- Stefanie Arndt
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany)
| | | |
Collapse
|
32
|
Simonova A, Balintová J, Pohl R, Havran L, Fojta M, Hocek M. Methoxyphenol and Dihydrobenzofuran as Oxidizable Labels for Electrochemical Detection of DNA. Chempluschem 2014. [DOI: 10.1002/cplu.201402194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Kielkowski P, Fanfrlík J, Hocek M. 7-Aryl-7-deazaadenine 2′-Deoxyribonucleoside Triphosphates (dNTPs): Better Substrates for DNA Polymerases than dATP in Competitive Incorporations. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404742] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Kielkowski P, Fanfrlík J, Hocek M. 7-Aryl-7-deazaadenine 2'-deoxyribonucleoside triphosphates (dNTPs): better substrates for DNA polymerases than dATP in competitive incorporations. Angew Chem Int Ed Engl 2014; 53:7552-5. [PMID: 24890276 DOI: 10.1002/anie.201404742] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 01/31/2023]
Abstract
A series of 7-substituted 7-deazaadenine and 5-substituted cytosine 2'-deoxyribonucleoside triphosphates (dNTPs) were tested for their competitive incorporations (in the presence of dATP and dCTP) into DNA by several DNA polymerases by using analysis based on cleavage by restriction endonucleases. 7-Aryl-7-deazaadenine dNTPs were more efficient substrates than dATP because of their higher affinity for the active site of the enzyme, as proved by kinetic measurements and calculations.
Collapse
Affiliation(s)
- Pavel Kielkowski
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) http://www.uochb.cas.cz/hocekgroup
| | | | | |
Collapse
|