1
|
Zhou Z, Brennan JD, Li Y. A Multi‐component All‐DNA Biosensing System Controlled by a DNAzyme. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhixue Zhou
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4O3 Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
2
|
Zhou Z, Brennan JD, Li Y. A Multi‐component All‐DNA Biosensing System Controlled by a DNAzyme. Angew Chem Int Ed Engl 2020; 59:10401-10405. [PMID: 32207868 DOI: 10.1002/anie.202002019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Zhixue Zhou
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4O3 Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
3
|
Spelkov AA, Goncharova EA, Savin AM, Kolpashchikov DM. Bifunctional RNA-Targeting Deoxyribozyme Nanodevice as a Potential Theranostic Agent. Chemistry 2020; 26:3489-3493. [PMID: 31943434 DOI: 10.1002/chem.201905528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/09/2020] [Indexed: 01/14/2023]
Abstract
Theranostic approaches rely on simultaneous diagnostic of a disease and its therapy. Here, we designed a DNA nanodevice, which can simultaneously report the presence of a specific RNA target through an increase in fluorescence and cleave it. High selectivity of RNA target recognition under near physiological conditions was achieved. The proposed approach can become a basis for the design of DNA nanomachines and robots for diagnostics and therapy of viral infections, cancer, and genetic disorders.
Collapse
Affiliation(s)
- Aleksandr A Spelkov
- Laboratory of Solution Chemistry of Advanced Materials, and Technologies, ITMO University, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Ekaterina A Goncharova
- Laboratory of Solution Chemistry of Advanced Materials, and Technologies, ITMO University, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Artemii M Savin
- Laboratory of Solution Chemistry of Advanced Materials, and Technologies, ITMO University, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Dmitry M Kolpashchikov
- Laboratory of Solution Chemistry of Advanced Materials, and Technologies, ITMO University, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation.,Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| |
Collapse
|
4
|
Nedorezova DD, Fakhardo AF, Nemirich DV, Bryushkova EA, Kolpashchikov DM. Towards DNA Nanomachines for Cancer Treatment: Achieving Selective and Efficient Cleavage of Folded RNA. Angew Chem Int Ed Engl 2019; 58:4654-4658. [PMID: 30693619 DOI: 10.1002/anie.201900829] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 11/10/2022]
Abstract
Despite decades of effort, gene therapy (GT) has failed to deliver clinically significant anticancer treatment, owing in part to low selectivity, low efficiency, and poor accessibility of folded RNA targets. Herein, we propose to solve these common problems of GT agents by using a DNA nanotechnology approach. We designed a deoxyribozyme-based DNA machine that can i) recognize the sequence of a cancer biomarker with high selectivity, ii) tightly bind a structured fragment of a housekeeping gene mRNA, and iii) cleave it with efficiency greater than that of a traditional DZ-based cleaving agent. An important advantage of the DNA nanomachine over other gene therapy approaches (antisense, siRNA, and CRISPR/cas) is its ability to cleave a housekeeping gene mRNA after being activated by a cancer marker RNA, which can potentially increase the efficiency of anticancer gene therapy. The DNA machine could become a prototype platform for a new type of anticancer GT agent.
Collapse
Affiliation(s)
- Daria D Nedorezova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Anna F Fakhardo
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Daria V Nemirich
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina A Bryushkova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation.,Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
5
|
Nedorezova DD, Fakhardo AF, Nemirich DV, Bryushkova EA, Kolpashchikov DM. Towards DNA Nanomachines for Cancer Treatment: Achieving Selective and Efficient Cleavage of Folded RNA. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Anna F. Fakhardo
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Daria V. Nemirich
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Ekaterina A. Bryushkova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Dmitry M. Kolpashchikov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
- Chemistry Department University of Central Florida Orlando FL 32816-2366 USA
- Burnett School of Biomedical Sciences University of Central Florida Orlando FL 32816 USA
| |
Collapse
|
6
|
Evangelista BA, Kim YS, Kolpashchikov DM. FaptaSyme: A Strategy for Converting a Monomer/Oligomer-Nonselective Aptameric Sensor into an Oligomer-Selective One. Chembiochem 2018; 19:10.1002/cbic.201800017. [PMID: 29700982 PMCID: PMC6422747 DOI: 10.1002/cbic.201800017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Aptameric sensors can bind molecular targets and produce output signals, a phenomenon that is used in bioassays. In some cases, it is important to distinguish between monomeric and oligomeric forms of a target. Here, we propose a strategy to convert a monomer/oligomer-nonselective sensor into an oligomer-selective sensor. We designed an aptazyme that produced a high fluorescent output in the presence of oligomeric α-synuclein (a molecular marker of Parkinson's disease) but not its monomeric form. The strategy is potentially useful in the design of point-of-care tests for the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Baggio A. Evangelista
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| | - Yoon-Seong Kim
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
| | - Dmitry M. Kolpashchikov
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA,
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| |
Collapse
|
7
|
Cox AJ, Bengtson HN, Gerasimova YV, Rohde KH, Kolpashchikov DM. DNA Antenna Tile-Associated Deoxyribozyme Sensor with Improved Sensitivity. Chembiochem 2016; 17:2038-2041. [PMID: 27620365 DOI: 10.1002/cbic.201600438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 12/17/2022]
Abstract
Some natural enzymes increase the rate of diffusion-limited reactions by facilitating substrate flow to their active sites. Inspired by this natural phenomenon, we developed a strategy for efficient substrate delivery to a deoxyribozyme (DZ) catalytic sensor. This resulted in a three- to fourfold increase in sensitivity and up to a ninefold improvement in the detection limit. The reported strategy can be used to enhance catalytic efficiency of diffusion-limited enzymes and to improve sensitivity of enzyme-based biosensors.
Collapse
Affiliation(s)
- Amanda J Cox
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Hillary N Bengtson
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Yulia V Gerasimova
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2366, USA
| | - Kyle H Rohde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2366, USA. .,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA. .,National Center for Forensic Science, University of Central Florida, 12354 Research Pkwy. Suite 225, Orlando, FL, 32826, USA.
| |
Collapse
|
8
|
Mailloux S, Gerasimova YV, Guz N, Kolpashchikov DM, Katz E. Bridging the Two Worlds: A Universal Interface between Enzymatic and DNA Computing Systems. Angew Chem Int Ed Engl 2015; 54:6562-6. [PMID: 25864379 PMCID: PMC4495919 DOI: 10.1002/anie.201411148] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/06/2015] [Indexed: 11/09/2022]
Abstract
Molecular computing based on enzymes or nucleic acids has attracted a great deal of attention due to the perspectives of controlling living systems in the way we control electronic computers. Enzyme-based computational systems can respond to a great variety of small molecule inputs. They have the advantage of signal amplification and highly specific recognition. DNA computing systems are most often controlled by oligonucleotide inputs/outputs and are capable of sophisticated computing as well as controlling gene expressions. Here, we developed an interface that enables communication of otherwise incompatible nucleic-acid and enzyme-computational systems. The enzymatic system processes small molecules as inputs and produces NADH as an output. The NADH output triggers electrochemical release of an oligonucleotide, which is accepted by a DNA computational system as an input. This interface is universal because the enzymatic and DNA computing systems are independent of each other in composition and complexity.
Collapse
Affiliation(s)
- Shay Mailloux
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810 (USA)
| | - Yulia V Gerasimova
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366 (USA)
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810 (USA)
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366 (USA).
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810 (USA).
| |
Collapse
|
9
|
Mailloux S, Gerasimova YV, Guz N, Kolpashchikov DM, Katz E. Bridging the Two Worlds: A Universal Interface between Enzymatic and DNA Computing Systems. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Brown CW, Lakin MR, Fabry-Wood A, Horwitz EK, Baker NA, Stefanovic D, Graves SW. A unified sensor architecture for isothermal detection of double-stranded DNA, oligonucleotides, and small molecules. Chembiochem 2015; 16:725-30. [PMID: 25663617 PMCID: PMC4422402 DOI: 10.1002/cbic.201402615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 12/29/2022]
Abstract
Pathogen detection is an important problem in many areas of medicine and agriculture, which can involve genomic or transcriptomic signatures or small-molecule metabolites. We report a unified, DNA-based sensor architecture capable of isothermal detection of double-stranded DNA targets, single-stranded oligonucleotides, and small molecules. Each sensor contains independent target detection and reporter modules, enabling rapid design. We detected gene variants on plasmids by using a straightforward isothermal denaturation protocol. The sensors were highly specific, even with a randomized DNA background. We achieved a limit of detection of ∼15 pM for single-stranded targets and ∼5 nM for targets on denatured plasmids. By incorporating a blocked aptamer sequence, we also detected small molecules using the same sensor architecture. This work provides a starting point for multiplexed detection of multi-strain pathogens, and disease states caused by genetic variants (e.g., sickle cell anemia).
Collapse
Affiliation(s)
- Carl W. Brown
- Center for Biomedical Engineering University of New Mexico, Albuquerque, NM 87131, USA
| | - Matthew R. Lakin
- Department of Computer Science University of New Mexico, Albuquerque, NM 87131, USA
| | - Aurora Fabry-Wood
- Center for Biomedical Engineering University of New Mexico, Albuquerque, NM 87131, USA
| | - Eli K. Horwitz
- Center for Biomedical Engineering University of New Mexico, Albuquerque, NM 87131, USA
| | - Nicholas A. Baker
- Center for Biomedical Engineering University of New Mexico, Albuquerque, NM 87131, USA
| | - Darko Stefanovic
- Center for Biomedical Engineering University of New Mexico, Albuquerque, NM 87131, USA
- Department of Computer Science University of New Mexico, Albuquerque, NM 87131, USA
| | - Steven W. Graves
- Center for Biomedical Engineering University of New Mexico, Albuquerque, NM 87131, USA
- Department of Chemical and Biological Engineering University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
11
|
Brown CW, Lakin MR, Stefanovic D, Graves SW. Catalytic molecular logic devices by DNAzyme displacement. Chembiochem 2014; 15:950-4. [PMID: 24692254 DOI: 10.1002/cbic.201400047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 01/09/2023]
Abstract
Chemical reactions catalyzed by DNAzymes offer a route to programmable modification of biomolecules for therapeutic purposes. To this end, we have developed a new type of catalytic DNA-based logic gates in which DNAzyme catalysis is controlled via toehold-mediated strand displacement reactions. We refer to these as DNAzyme displacement gates. The use of toeholds to guide input binding provides a favorable pathway for input recognition, and the innate catalytic activity of DNAzymes allows amplification of nanomolar input concentrations. We demonstrate detection of arbitrary input sequences by rational introduction of mismatched bases into inhibitor strands. Furthermore, we illustrate the applicability of DNAzyme displacement to compute logic functions involving multiple logic gates. This work will enable sophisticated logical control of a range of biochemical modifications, with applications in pathogen detection and autonomous theranostics.
Collapse
Affiliation(s)
- Carl W Brown
- Center for Biomedical Engineering, MSC01 1141, 1 University of New Mexico, Albuquerque, NM 87131 (USA)
| | | | | | | |
Collapse
|