1
|
Serrano JL. Water-Soluble Pd-Imidate Complexes as Versatile Catalysts for the Modification of Unprotected Halonucleosides. CHEM REC 2022; 22:e202200179. [PMID: 36094784 DOI: 10.1002/tcr.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Modification of unprotected nucleosides has been attracting continuous interest, since these building blocks themselves and their phosphate-upgraded corresponding nucleotides have shown a plethora of uses in fields like biochemistry or pharmacy. Pd-catalyzed cross-coupling reactions, conducted in water or its mixtures with polar organic solvents, have frequently been the researchers' choice for the functionalization of the purine/pyrimidine base of the unprotected nucleosides. In this scenario, the availability of hydrophilic ligands and its water-soluble palladium complexes has markedly set the pace of the advances. The approach of our group to the synthesis of such complexes, Pd-imidates specifically, has faced critical stages, namely the jump to synthesize water soluble complexes from our experience working in conventional solvents, the preparation of phosphine free complexes and the overall goal of getting catalytic systems able to work close to room temperature. The continuous feedback with Kapdi's group, experienced in the chemistry of nucleosides, has produced over the last decade the interesting results in both fields presented here.
Collapse
Affiliation(s)
- José Luis Serrano
- Departamento de Ingeniería Química y Ambiental., Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203, Cartagena, Spain
| |
Collapse
|
2
|
Shaughnessy KH. Covalent Modification of Nucleobases using Water-Soluble Palladium Catalysts. CHEM REC 2022; 22:e202200190. [PMID: 36074958 DOI: 10.1002/tcr.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Nucleosides represent one of the key building blocks of biochemistry. There is significant interest in the synthesis of nucleoside-derived materials for applications as probes, biochemical models, and pharmaceuticals. Palladium-catalyzed cross-coupling reactions are effective methods for making covalent modification of carbon and nitrogen sites on nucleobases under mild conditions. Water-soluble catalysts derived from palladium and hydrophilic ligands, such as tris(3-sulfonatophenyl)phosphine trisodium (TPPTS), are efficient catalysts for a range of coupling reactions of unprotected halonucleosides. Over the past two decades, these methods have been extended to direct functionalization of halonucleotides, as well as RNA and DNA oligonucleotides (ONs) containing halogenated bases. These methods can be run under biocompatible conditions, including examples of Suzuki coupling of modified DNA in whole cells and tissue samples. In this account, development of this methodology by our group and others is highlighted along with the extension of these catalyst systems to modification of nucleotides and ONs.
Collapse
Affiliation(s)
- Kevin H Shaughnessy
- Department of Chemistry & Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487-0336, USA
| |
Collapse
|
3
|
Leone D, Pohl R, Hubálek M, Kadeřábková M, Krömer M, Sýkorová V, Hocek M. Glyoxal‐Linked Nucleotides and DNA for Bioconjugations and Crosslinking with Arginine‐Containing Peptides and Proteins. Chemistry 2022; 28:e202104208. [DOI: 10.1002/chem.202104208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Denise‐Liu' Leone
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Marta Kadeřábková
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| |
Collapse
|
4
|
Ito Y, Hari Y. Synthesis of Nucleobase-Modified Oligonucleotides by Post-Synthetic Modification in Solution. CHEM REC 2022; 22:e202100325. [PMID: 35119181 DOI: 10.1002/tcr.202100325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Oligonucleotides containing modified nucleobases have applications in various technologies. In general, to synthesize oligonucleotides with different nucleobase structures, each modified phosphoramidite monomer needs to be prepared over multiple steps and then introduced onto the oligonucleotides, which is time-consuming and inefficient. Post-synthetic modification is a powerful strategy for preparing many types of modified oligonucleotides, especially nucleobase-modified ones. Depending on the stage of modification, post-synthetic modification can be divided into two stages: "solid-phase modification," wherein an oligonucleotide attaches to the resin, and "solution-phase modification," wherein an oligonucleotide detaches itself from the resin. In this review, we focus on post-synthetic modification in solution for the synthesis of nucleobase-modified oligonucleotides, except the modifications to linkers for conjugation. Moreover, the reactions are summarized for each modified position of the nucleobases.
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan
| |
Collapse
|
5
|
Sýkorová V, Tichý M, Hocek M. Polymerase Synthesis of DNA Containing Iodinated Pyrimidine or 7-Deazapurine Nucleobases and Their Post-synthetic Modifications through the Suzuki-Miyaura Cross-Coupling Reactions. Chembiochem 2021; 23:e202100608. [PMID: 34821441 DOI: 10.1002/cbic.202100608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Indexed: 11/08/2022]
Abstract
All four iodinated 2'-deoxyribonucleoside triphosphates (dNTPs) derived from 5-iodouracil, 5-iodocytosine, 7-iodo-7-deazaadenine and 7-iodo-7-deazaguanine were prepared and studied as substrates for KOD XL DNA polymerase. All of the nucleotides were readily incorporated by primer extension and by PCR amplification to form DNA containing iodinated nucleobases. Systematic study of the Suzuki-Miyaura cross-coupling reactions with two bulkier arylboronic acids revealed that the 5-iodopyrimidines were more reactive and gave cross-coupling products both in the terminal or internal position in single-stranded oligonucleotides (ssONs) and in the terminal position of double-stranded DNA (dsDNA), whereas the 7-iodo-7-deazapurines were less reactive and gave cross-coupling products only in the terminal position. None of the four iodinated bases reacted in an internal position of dsDNA. These findings are useful for the use of the iodinated nucleobases for post-synthetic modification of DNA with functional groups for various applications.
Collapse
Affiliation(s)
- Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
6
|
Leone D, Hubálek M, Pohl R, Sýkorová V, Hocek M. 1,3-Diketone-Modified Nucleotides and DNA for Cross-Linking with Arginine-Containing Peptides and Proteins. Angew Chem Int Ed Engl 2021; 60:17383-17387. [PMID: 34107150 PMCID: PMC8362068 DOI: 10.1002/anie.202105126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Indexed: 12/28/2022]
Abstract
Linear or branched 1,3-diketone-linked thymidine 5'-O-mono- and triphosphate were synthesized through CuAAC click reaction of diketone-alkynes with 5-azidomethyl-dUMP or -dUTP. The triphosphates were good substrates for KOD XL DNA polymerase in primer extension synthesis of modified DNA. The nucleotide bearing linear 3,5-dioxohexyl group (HDO) efficiently reacted with arginine-containing peptides to form stable pyrimidine-linked conjugates, whereas the branched 2-acetyl-3-oxo-butyl (PDO) group was not reactive. Reaction with Lys or a terminal amino group formed enamine adducts that were prone to hydrolysis. This reactive HDO modification in DNA was used for bioconjugations and cross-linking with Arg-containing peptides or proteins (e.g. histones).
Collapse
Affiliation(s)
- Denise‐Liu' Leone
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
7
|
Leone D, Hubálek M, Pohl R, Sýkorová V, Hocek M. 1,3‐Diketone‐Modified Nucleotides and DNA for Cross‐Linking with Arginine‐Containing Peptides and Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Denise‐Liu' Leone
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| |
Collapse
|
8
|
Jbara M, Rodriguez J, Dhanjee HH, Loas A, Buchwald SL, Pentelute BL. Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Muhammad Jbara
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Jacob Rodriguez
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Heemal H. Dhanjee
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Andrei Loas
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
- The Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street Cambridge MA 02142 USA
- Center for Environmental Health Sciences Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Broad Institute of MIT and Harvard 415 Main Street Cambridge MA 02142 USA
| |
Collapse
|
9
|
Jbara M, Rodriguez J, Dhanjee HH, Loas A, Buchwald SL, Pentelute BL. Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents. Angew Chem Int Ed Engl 2021; 60:12109-12115. [PMID: 33730425 DOI: 10.1002/anie.202103180] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Organometallic reagents enable practical strategies for bioconjugation. Innovations in the design of water-soluble ligands and the enhancement of reaction rates have allowed for chemoselective cross-coupling reactions of peptides and proteins to be carried out in water. There are currently no organometallic-based methods for oligonucleotide bioconjugation to other biomolecules. Here we report bifunctional palladium(II)-oxidative addition complexes (OACs) as reagents for high-yielding oligonucleotide bioconjugation reactions. These bifunctional OACs react chemoselectively with amine-modified oligonucleotides to generate the first isolable, bench stable oligonucleotide-palladium(II) OACs. These complexes undergo site-selective C-S arylation with a broad range of native thiol-containing biomolecules at low micromolar concentrations in under one hour. This approach provided oligonucleotide-peptide, oligonucleotide-protein, oligonucleotide-small molecule, and oligonucleotide-oligonucleotide conjugates in >80 % yield and afforded conjugation of multiple copies of oligonucleotides onto a monoclonal antibody.
Collapse
Affiliation(s)
- Muhammad Jbara
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Jacob Rodriguez
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Heemal H Dhanjee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02142, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| |
Collapse
|
10
|
Liao Q, Ke C, Huang X, Wang D, Han Q, Zhang Y, Zhang Y, Xi K. A Versatile Method for Functionalization of Covalent Organic Frameworks via Suzuki–Miyaura Cross‐Coupling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qiaobo Liao
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Can Ke
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Xin Huang
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Dongni Wang
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Qingwen Han
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yifan Zhang
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yiying Zhang
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Kai Xi
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
11
|
Liao Q, Ke C, Huang X, Wang D, Han Q, Zhang Y, Zhang Y, Xi K. A Versatile Method for Functionalization of Covalent Organic Frameworks via Suzuki–Miyaura Cross‐Coupling. Angew Chem Int Ed Engl 2020; 60:1411-1416. [DOI: 10.1002/anie.202012435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Qiaobo Liao
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Can Ke
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Xin Huang
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Dongni Wang
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Qingwen Han
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yifan Zhang
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yiying Zhang
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Kai Xi
- School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
12
|
Muangkaew P, Vilaivan T. Pyrrolidinyl Peptide Nucleic Acid Probes Capable of Crosslinking with DNA: Effects of Terminal and Internal Modifications on Crosslink Efficiency. Chembiochem 2020; 22:241-252. [PMID: 32889765 DOI: 10.1002/cbic.202000589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/03/2020] [Indexed: 12/27/2022]
Abstract
In this study, we describe a furan-modified acpcPNA as a probe that can form an interstrand crosslink (ICL) with its DNA target upon activation with N-bromosuccinimide (NBS). To overcome the problem of furan instability under acidic conditions, a simple and versatile post-synthetic methodology for the attachment of the furan group to the PNA probe was developed. Unlike in other designs, the furan was placed at the end of the PNA molecule or tethered to the PNA backbone with all the base pairs in the PNA ⋅ DNA duplexes fully preserved. Hence, the true reactivity of each nucleobase towards the crosslinking could be compared. We show that all DNA bases except T could participate in the crosslinking reaction when the furan was placed at the end of the PNA strand. The crosslinking process was sensitive to mispairing, and lower crosslinking efficiency was observed in the presence of a base-mismatch in the PNA ⋅ DNA duplex. In contrast, when the furan was placed at internal positions of the acpcPNA ⋅ DNA duplex, no ICL was observed; this was explained by the inability of a hydrogen-bonded nucleobase to participate in the crosslinking reaction. The crosslinking efficiency was considerably improved, despite lower duplex stability, when an unpaired base (in the form of C-insertion) was present in the complementary DNA strand close to the furan modification site.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| |
Collapse
|
13
|
Rodríguez J, Martínez-Calvo M. Transition-Metal-Mediated Modification of Biomolecules. Chemistry 2020; 26:9792-9813. [PMID: 32602145 DOI: 10.1002/chem.202001287] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/25/2020] [Indexed: 01/15/2023]
Abstract
The site-selective modification of biomolecules has grown spectacularly in recent years. The presence of a large number of functional groups in a biomolecule makes its chemo- and regioselective modification a challenging goal. In this context, transition-metal-mediated reactions are emerging as a powerful tool owing to their unique reactivity and good functional group compatibility, allowing highly efficient and selective bioconjugation reactions that operate under mild conditions. This Minireview focuses on the current state of organometallic chemistry for bioconjugation, highlighting the potential of transition metals for the development of chemoselective and site-specific methods for functionalization of peptides, proteins and nucleic acids. The importance of the selection of ligands attached to the transition metal for conferring the desired chemoselectivity will be highlighted.
Collapse
Affiliation(s)
- Jessica Rodríguez
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Miguel Martínez-Calvo
- Centro de Investigaciones Científicas Avanzadas (CICA), AE CICA-INIBIC, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de Elviña, 15071 A, Coruña, Galicia, Spain
| |
Collapse
|
14
|
Ivancová I, Pohl R, Hubálek M, Hocek M. Squaramate-Modified Nucleotides and DNA for Specific Cross-Linking with Lysine-Containing Peptides and Proteins. Angew Chem Int Ed Engl 2019; 58:13345-13348. [PMID: 31328344 PMCID: PMC6771961 DOI: 10.1002/anie.201906737] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/12/2019] [Indexed: 01/31/2023]
Abstract
Squaramate-linked 2'-deoxycytidine 5'-O-triphosphate was synthesized and found to be good substrate for KOD XL DNA polymerase in primer extension or PCR synthesis of modified DNA. The resulting squaramate-linked DNA reacts with primary amines to form a stable diamide linkage. This reaction was used for bioconjugations of DNA with Cy5 and Lys-containing peptides. Squaramate-linked DNA formed covalent cross-links with histone proteins. This reactive nucleotide has potential for other bioconjugations of nucleic acids with amines, peptides or proteins without need of any external reagent.
Collapse
Affiliation(s)
- Ivana Ivancová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 8CZ-12843Prague 2Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 8CZ-12843Prague 2Czech Republic
| |
Collapse
|
15
|
Ivancová I, Pohl R, Hubálek M, Hocek M. Squaramate‐Modified Nucleotides and DNA for Specific Cross‐Linking with Lysine‐Containing Peptides and Proteins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ivana Ivancová
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in Prague Hlavova 8 CZ-12843 Prague 2 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in Prague Hlavova 8 CZ-12843 Prague 2 Czech Republic
| |
Collapse
|
16
|
Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Arylation Chemistry for Bioconjugation. Angew Chem Int Ed Engl 2019; 58:4810-4839. [PMID: 30399206 PMCID: PMC6433541 DOI: 10.1002/anie.201806009] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Bioconjugation chemistry has been used to prepare modified biomolecules with functions beyond what nature intended. Central to these techniques is the development of highly efficient and selective bioconjugation reactions that operate under mild, biomolecule compatible conditions. Methods that form a nucleophile-sp2 carbon bond show promise for creating bioconjugates with new modifications, sometimes resulting in molecules with unparalleled functions. Here we outline and review sulfur, nitrogen, selenium, oxygen, and carbon arylative bioconjugation strategies and their applications to modify peptides, proteins, sugars, and nucleic acids.
Collapse
Affiliation(s)
- Chi Zhang
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| | - Ekaterina V. Vinogradova
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
- Dr. E. V. Vinogradova, The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexander M. Spokoyny
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
- Prof. Dr. A. M. Spokoyny, Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Stephen L. Buchwald
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| | - Bradley L. Pentelute
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| |
Collapse
|
17
|
Räisälä H, Lönnberg T. Covalently Palladated Oligonucleotides Through Oxidative Addition of Pd 0. Chemistry 2019; 25:4751-4756. [PMID: 30666718 DOI: 10.1002/chem.201806022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/11/2019] [Indexed: 12/13/2022]
Abstract
An 11-mer oligonucleotide incorporating a central (2-iodobenzoylamino)methyl residue has been synthesized and palladated by oxidative addition of Pd2 (dba)3 . UV melting profiles of the duplexes formed by the palladated oligonucleotide with its natural complements were biphasic and the higher melting temperatures (Tm ) exhibited considerable hysteresis. CD spectra, in turn, resembled those of canonical B-type double helices. Two-step denaturation, with the "low-Tm " melting involving only canonical base pairs and the "high-Tm " melting involving also dissociation of a PdII -mediated base pair, appears the most likely explanation for the observed UV melting profiles. As the latter step in all cases takes place at a higher temperature than denaturation of natural duplexes of the same length, the putative PdII -mediated base pairs are stabilizing.
Collapse
Affiliation(s)
- Harri Räisälä
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014, Turku, Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014, Turku, Finland
| |
Collapse
|
18
|
Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Arylierungschemie für die Biokonjugation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chi Zhang
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Ekaterina V. Vinogradova
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- The Skaggs Institute for Chemical Biology and Department of Molecular MedicineThe Scripps Research Institute La Jolla CA 92037 USA
| | - Alexander M. Spokoyny
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles 607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Stephen L. Buchwald
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
19
|
Whitfield CJ, Little RC, Khan K, Ijiro K, Connolly BA, Tuite EM, Pike AR. Self-Priming Enzymatic Fabrication of Multiply Modified DNA. Chemistry 2018; 24:15267-15274. [PMID: 29931815 DOI: 10.1002/chem.201801976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/19/2018] [Indexed: 12/15/2022]
Abstract
The self-priming synthesis of multiply modified DNA by the extension of repeating unit duplex "oligoseeds" provides a source of versatile DNA. Sterically-demanding nucleotides 5-Br-dUTP, 7-deaza-7-I-dATP, 6-S-dGTP, 5-I-dCTP as well as 5-(octadiynyl)-dCTP were incorporated into two extending oligoseeds; [GATC]5 /[GATC]5 and [A4 G]4 /[CT4 ]4 . The products contained modifications on one or both strands of DNA, demonstrating their recognition by the polymerase as both template (reading) and substrate (writing). Nucleobase modifications that lie in the major groove were reliably read and written by the polymerase during the extension reaction, even when bulky or in contiguous sequences. Repeat sequence DNA over 500 bp long, bearing four different modified units was produced by this method. The number, position and type of modification, as well as the overall length of the DNA can be controlled to yield designer DNA that offers sequence-determined sites for further chemical adaptations, targeted small molecule binding studies, or sensing and sequencing applications.
Collapse
Affiliation(s)
- Colette J Whitfield
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Rachel C Little
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kasid Khan
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Bernard A Connolly
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Eimer M Tuite
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrew R Pike
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
20
|
Probst N, Lartia R, Théry O, Alami M, Defrancq E, Messaoudi S. Efficient Buchwald-Hartwig-Migita Cross-Coupling for DNA Thioglycoconjugation. Chemistry 2018; 24:1795-1800. [PMID: 29205564 DOI: 10.1002/chem.201705371] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 11/11/2022]
Abstract
An efficient method for the thioglycoconjugation of iodinated oligonucleotides by Buchwald-Hartwig-Migita cross-coupling under mild conditions is reported. The method enables divergent synthesis of many different functionalized thioglycosylated ODNs in good yields, without affecting the integrity of the other A, C, and G nucleobases.
Collapse
Affiliation(s)
- Nicolas Probst
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Rémy Lartia
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Océane Théry
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Mouâd Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Eric Defrancq
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| |
Collapse
|
21
|
Defrancq E, Messaoudi S. Palladium-Mediated Labeling of Nucleic Acids. Chembiochem 2017; 18:426-431. [PMID: 28000981 DOI: 10.1002/cbic.201600599] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 11/11/2022]
Abstract
New applications of Pd-catalyzed coupling reactions (Suzuki-Miyaura, Sonogashira, and Stille-Migita coupling) for post-conjugation of nucleic acids have been developed recently. Breakthroughs in this area might now pave the way for the development of sophisticated DNA probes, which might be of great interest in chemical biology, nanotechnology, and bioanalysis, as well as in diagnostic domains.
Collapse
Affiliation(s)
- Eric Defrancq
- Université Grenoble Alpes, CNRS, Département de Chimie Moléculaire, UMR 5250, B. P. 53, 38041, Grenoble Cedex 9, France
| | - Samir Messaoudi
- Université Paris-Sud, CNRS, BioCIS-UMR 8076, Laboratoire CoSMIT, Equipe Labellisée Ligue Contre Le Cancer, LabEx LERMIT, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, 92296, France
| |
Collapse
|
22
|
Wang L, Ishida A, Hashidoko Y, Hashimoto M. Dehydrogenation of the NH−NH Bond Triggered by Potassium
tert
‐Butoxide in Liquid Ammonia. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lei Wang
- Division of Applied Bioscience Graduate School of Agriculture Hokkaido University Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan
| | - Akiko Ishida
- Division of Applied Bioscience Graduate School of Agriculture Hokkaido University Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan
| | - Yasuyuki Hashidoko
- Division of Applied Bioscience Graduate School of Agriculture Hokkaido University Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan
| | - Makoto Hashimoto
- Division of Applied Bioscience Graduate School of Agriculture Hokkaido University Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan
| |
Collapse
|
23
|
Wang L, Ishida A, Hashidoko Y, Hashimoto M. Dehydrogenation of the NH-NH Bond Triggered by Potassium tert-Butoxide in Liquid Ammonia. Angew Chem Int Ed Engl 2016; 56:870-873. [PMID: 27936299 DOI: 10.1002/anie.201610371] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Indexed: 12/24/2022]
Abstract
A novel strategy for the dehydrogenation of the NH-NH bond is disclosed using potassium tert-butoxide (tBuOK) in liquid ammonia (NH3 ) under air at room temperature. Its synthetic value is well demonstrated by the highly efficient synthesis of aromatic azo compounds (up to 100 % yield, 3 min), heterocyclic azo compounds, and dehydrazination of phenylhydrazine. The broad application of this strategy and its benefit to chemical biology is proved by a novel, convenient, one-pot synthesis of aliphatic diazirines, which are important photoreactive agents for photoaffinity labeling.
Collapse
Affiliation(s)
- Lei Wang
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Akiko Ishida
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Yasuyuki Hashidoko
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Makoto Hashimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| |
Collapse
|
24
|
Takada T, Ido M, Ashida A, Nakamura M, Yamana K. DNA-Templated Synthesis of Perylenediimide Stacks Utilizing Abasic Sites as Binding Pockets and Reactive Sites. Chembiochem 2016; 17:2230-2233. [DOI: 10.1002/cbic.201600454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Tadao Takada
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; 2167 Shosha Himeji Hyogo 671-2280 Japan
| | - Misa Ido
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; 2167 Shosha Himeji Hyogo 671-2280 Japan
| | - Akane Ashida
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; 2167 Shosha Himeji Hyogo 671-2280 Japan
| | - Mitsunobu Nakamura
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; 2167 Shosha Himeji Hyogo 671-2280 Japan
| | - Kazushige Yamana
- Department of Applied Chemistry; Graduate School of Engineering; University of Hyogo; 2167 Shosha Himeji Hyogo 671-2280 Japan
| |
Collapse
|
25
|
Dadová J, Vrábel M, Adámik M, Brázdová M, Pohl R, Fojta M, Hocek M. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA–Protein Cross‐Linking. Chemistry 2015; 21:16091-102. [DOI: 10.1002/chem.201502209] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Jitka Dadová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Milan Vrábel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Matej Adámik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Marie Brázdová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno (Czech Republic)
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic)
| |
Collapse
|
26
|
Merkel M, Peewasan K, Arndt S, Ploschik D, Wagenknecht HA. Copper-Free Postsynthetic Labeling of Nucleic Acids by Means of Bioorthogonal Reactions. Chembiochem 2015; 16:1541-53. [DOI: 10.1002/cbic.201500199] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/25/2022]
|
27
|
|
28
|
Arndt S, Wagenknecht HA. "Photoclick" postsynthetic modification of DNA. Angew Chem Int Ed Engl 2014; 53:14580-2. [PMID: 25359534 DOI: 10.1002/anie.201407874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/12/2014] [Indexed: 12/31/2022]
Abstract
A new DNA building block bearing a push-pull-substituted diaryltetrazole linked to the 5-position of 2'-deoxyuridine through an aminopropynyl group was synthesized. The accordingly modified oligonucleotide allows postsynthetic labeling with a maleimide-modified sulfo-Cy3 dye, N-methylmaleimide, and methylmethacrylate as dipolarophiles by irradiation at 365 nm (LED). The determined rate constant of (23±7) M(-1) s(-1) is remarkably high with respect to other copper-free bioorthogonal reactions and comparable with the copper-catalyzed cycloaddition between azides and acetylenes.
Collapse
Affiliation(s)
- Stefanie Arndt
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany)
| | | |
Collapse
|
29
|
Krause A, Hertl A, Muttach F, Jäschke A. Phosphine-free Stille-Migita chemistry for the mild and orthogonal modification of DNA and RNA. Chemistry 2014; 20:16613-9. [PMID: 25322724 DOI: 10.1002/chem.201404843] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 12/31/2022]
Abstract
An optimized catalyst system of [Pd2 (dba)3 ] and AsPh3 efficiently catalyzes the Stille reaction between a diverse set of functionalized stannanes and halogenated mono-, di- and oligonucleotides. The methodology allows for the facile conjugation of short and long nucleic acid molecules with moieties that are not compatible with conventional chemical or enzymatic synthesis, among them acid-, base-, or fluoride-labile protecting groups, fluorogenic and synthetically challenging moieties with good to near-quantitative yields. Notably, even azides can be directly introduced into oligonucleotides and (deoxy)nucleoside triphosphates, thereby giving direct access to "clickable" nucleic acids.
Collapse
Affiliation(s)
- André Krause
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg
| | | | | | | |
Collapse
|